Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ENVSOFT.2021.105122 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Increasing wildfire activity globally has become an urgent issue with enormous ecological and social impacts. In this work, we focus on analyzing and quantifying the influence of landscape topology, understood as the spatial structure and interaction of multiple land-covers in an area, on fire ignition. We propose a deep learning framework, Deep Fire Topology, to estimate and predict wildfire ignition risk. We focus on understanding the impact of these topological attributes and the rationale behind the results to provide interpretable knowledge for territorial planning considering wildfire ignition uncertainty. We demonstrate the high performance and interpretability of the framework in a case study, accurately detecting risky areas by exploiting spatial patterns. This work reveals the strong potential of landscape topology in wildfire occurrence prediction and its implications to develop robust landscape management plans. We discuss potential extensions and applications of the proposed method, available as an open-source software.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Pais, Cristobal | Hombre |
UNIV CALIF BERKELEY - Estados Unidos
University of California, Berkeley - Estados Unidos |
| 2 | MIRANDA-CERPA, ALEJANDRO | Hombre |
Universidad de Chile - Chile
Universidad de La Frontera - Chile |
| 3 | CARRASCO-CERDA, JORGE FERNANDO | Hombre |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile Complex Engineering System Institute - ISCI - Chile |
| 4 | Shen, Zuo Jun Max | - |
UNIV CALIF BERKELEY - Estados Unidos
University of California, Berkeley - Estados Unidos Department of Civil and Environmental Engineering - Estados Unidos |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Instituto de Sistemas Complejos de Ingeniería |
| Agencia Nacional de Investigacion y Desarrollo (ANID), Chile |
| Agencia Nacional de Investigación y Desarrollo |
| ANID/FONDAP |
| Agencia Nacional de Investigaci?n y Desarrollo |
| ANID Postdoctoral Fondecyt project |
| National Commission for Scientific and Technological Research CONICYT, Chile from the Complex Engineering Systems Institute PIA/BASAL |
| ANID Postdoctoral Fondecyt |
| Agradecimiento |
|---|
| A.M. thanks ANID/FONDAP/15110009 and ANID Postdoctoral Fondecyt project 3210101. J.C. acknowledges the support of the Na-tional Commission for Scientific and Technological Research CONICYT, Chile, through funding from the Complex Engineering Systems Institute PIA/BASAL AFB180003 and acknowledges the support of the Agencia Nacional de Investigacion y Desarrollo (ANID) , Chile, through fundingPostdoctoral Fondecyt project 3210311. |
| A.M. thanks ANID/FONDAP/15110009 and ANID Postdoctoral Fondecyt project 3210101. J.C. acknowledges the support of the National Commission for Scientific and Technological Research CONICYT, Chile , through funding from the Complex Engineering Systems Institute PIA/BASAL AFB180003 and acknowledges the support of the Agencia Nacional de Investigación y Desarrollo (ANID), Chile , through funding Postdoctoral Fondecyt project 3210311 . |
| A.M. thanks ANID/FONDAP/15110009 and ANID Postdoctoral Fondecyt project 3210101. J.C. acknowledges the support of the National Commission for Scientific and Technological Research CONICYT, Chile , through funding from the Complex Engineering Systems Institute PIA/BASAL AFB180003 and acknowledges the support of the Agencia Nacional de Investigación y Desarrollo (ANID), Chile , through funding Postdoctoral Fondecyt project 3210311 . |