Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAM.2020.113350 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this article, we extend MPRK methods, named MPRKO methods, using Oliver's approach (Oliver, 1975) to improve the accuracy of these schemes in the field of nonautonomous systems. The approach does not demand Ae = c in the Butcher tableau (A, b, c), where e = (1, ... , 1)(T). Following the general analysis of MPRK schemes described in Kopecz and Meister (2018), positivity and mass conservation fundamental properties are proven and even conditions concerning the Patankar weights are given to get second order accuracy of the MPRKO methods. Finally, we consider different linear models and a non-linear epidemiological SEIR problem to confirm the theoretical results and to give reliable statements about the accuracy of the novel class of MPRKO methods. (C) 2020 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | AVILA-BARRERA, ANDRES IGNACIO | Hombre |
Universidad de La Frontera - Chile
|
| 2 | Javier Gonzalez, Galo | Hombre |
Univ Cent Ecuador - Ecuador
Universidad Central del Ecuador - Ecuador |
| 2 | González, Galo Javier | Hombre |
Universidad Central del Ecuador - Ecuador
|
| 3 | Kopecz, Stefan | Hombre |
Univ Kassel - Alemania
Universität Kassel - Alemania |
| 4 | Meister, A. | Hombre |
Univ Kassel - Alemania
Universität Kassel - Alemania |