Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A causal framework to determine the effectiveness of dynamic quarantine policy to mitigate COVID-19
Indexado
WoS WOS:000641371000001
Scopus SCOPUS_ID:85101939074
DOI 10.1016/J.ASOC.2021.107241
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Since the start of the pandemic caused by the novel coronavirus, COVID-19, more than 106 million people have been infected and global deaths have surpassed 2.4 million. In Chile, the government restricted the activities and movement of people, organizations, and companies, under the concept of dynamic quarantine across municipalities for a predefined period of time. Chile is an interesting context to study because reports to have a higher quantity of infections per million people as well as a higher number of polymerize chain reaction (PCR) tests per million people. The higher testing rate means that Chile has good measurement of the contagious compared to other countries. Further, the heterogeneity of the social, economic, and demographic variables collected of each Chilean municipality provides a robust set of control data to better explain the contagious rate for each city. In this paper, we propose a framework to determine the effectiveness of the dynamic quarantine policy by analyzing different causal models (meta-learners and causal forest) including a time series pattern related to effective reproductive number. Additionally, we test the ability of the proposed framework to understand and explain the spread over benchmark traditional models and to interpret the Shapley Additive Explanations (SHAP) plots. The conclusions derived from the proposed framework provide important scientific information for government policymakers in disease control strategies, not only to analyze COVID-19 but to have a better model to determine social interventions for future outbreaks. (c) 2021 Elsevier B.V. All rights reserved.

Revista



Revista ISSN
Applied Soft Computing 1568-4946

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Scopus
Software
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 KRISTJANPOLLER-RODRIGUEZ, WERNER DAVID Hombre Universidad Técnica Federico Santa María - Chile
2 Michell, Kevin Hombre Universidad Técnica Federico Santa María - Chile
3 Minutolo, Marcel Hombre Robert Morris Univ - Estados Unidos
Robert Morris University - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID-Chile FONDECYT
ANIDChile FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We acknowledge financial support from ANIDChile FONDECYT 1200555.
We acknowledge financial support from ANID-Chile FONDECYT 1200555 .

Muestra la fuente de financiamiento declarada en la publicación.