Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO2 nanostructures with tunable morphology
Indexado
WoS WOS:000643678900005
Scopus SCOPUS_ID:85101173957
DOI 10.1016/J.CEJ.2021.128906
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Arsenic water pollution is a serious global environmental issue because of the high toxicity of this chemical element. Hence, the development of versatile materials that can efficiently remove different arsenic species from water is a global challenge. In this study, the bi-functionality of anatase TiO2 nanostructures (nanoparticles (TNP) and nanotubes (TNT)) for the simultaneous photo-oxidation of As(III) to As(V) and adsorption of the generated As(V) was evaluated, and the effect of morphology on the photo-oxidation and adsorption behaviors of the nanomaterials at different pH conditions was determined. In the dark, both the photocatalysts exhibited a remarkably high As(III) adsorption capacity in alkaline conditions because of the high hydroxylation of the nanomaterial surfaces at a basic pH. Upon irradiation, the As(III) ions completely oxidized into As(V) ions in a short time by the TNT and TNP samples at different initial pHs. However, compared with TNP, TNT exhibited a remarkably enhanced photoactivity because of their one-dimensional nanotubular morphology that facilitates the transfer of the photogenerated electron-hole to the surface, improving the hydroxyl radicals photogeneration. Moreover, post-reaction XPS analysis revealed that the As(III) ions adsorbed on TNP under dark conditions completely oxidized into As(V) upon irradiation. As evidenced by the experimental results, TNP exhibited excellent bi-functionality for arsenic removal since the As(V) ions generated by As(III) oxidation both on the material surface and in the aqueous medium were simultaneously adsorbed on the nanoparticle surface. Thus, a better understanding of the morphological effect on the photocatalytic system for oxidizing As(III) and adsorbing As(V) at different pHs was presented and mechanisms are proposed. The study provides guidance for the development of bi-functional nanoparticles through morphological design and surface engineering.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Chemical
Engineering, Environmental
Scopus
Chemistry (All)
Industrial And Manufacturing Engineering
Chemical Engineering (All)
Environmental Chemistry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Rosales, M. - Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
2 Orive, Joseba Hombre Universidad de Chile - Chile
Chilean Minist Econ Dev & Tourism - Chile
Chilean Ministry of Economy - Chile
3 GONZALEZ-ARANDA, RODRIGO ANDRES Hombre Universidad de Chile - Chile
4 Fernandez de Luis, Roberto Hombre Univ Basque Country - España
Universidad del País Vasco - España
5 Gauvin, Raynald Hombre MCGILL UNIV - Canadá
Université McGill - Canadá
6 Brodusch, Nicolas Hombre MCGILL UNIV - Canadá
Université McGill - Canadá
7 RODRIGUEZ-ESCALONA, BARBARA ELIDESMAR Mujer Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
8 GRACIA-CAROCA, FRANCISCO JAVIER Hombre Universidad de Chile - Chile
9 GARCIA-GARCIA, ALEJANDRA Mujer Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
European Regional Development Fund
Fondo de Fomento al Desarrollo Científico y Tecnológico
Euskal Herriko Unibertsitatea
Universidad de Santiago de Chile
FONDEF-CONICYT
European Social Fund
Universitat Politecnica de Valencia
ANID
Edge Hill University
Scientific and Technological Development Support Fund (FONDEF-CONICYT)
Nucleo Milenio MULTIMAT project
European Commission Research & Innovation H2020MSCA-RISE-2017 INDESMOF project
European Commission Research & Innovation H2020-MSCA-RISE-2017
European funding

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was funded by the Scientific and Technological Development Support Fund (FONDEF-CONICYT, IT19I0006). A. Garcia, R. Fernandez de Luis, and M. Rosales gratefully acknowledge the financial support of the European Commission Research & Innovation H2020MSCA-RISE-2017 (Ref.: 778412) INDESMOF project. M. Rosales, J. Orive, and R. Espinoza-Gonzalez kindly acknowledge the financial support from the Nucleo Milenio MULTIMAT project. F. Gracia acknowledges support from ANID through the project ANID/FONDAP/15110019.
This study was funded by the Scientific and Technological Development Support Fund (FONDEF-CONICYT, IT19I0006). A. García, R. Fernández de Luis, and M. Rosales gratefully acknowledge the financial support of the European Commission Research & Innovation H2020-MSCA-RISE-2017 (Ref.: 778412) INDESMOF project. M. Rosales, J. Orive, and R. Espinoza-González kindly acknowledge the financial support from the Nucleo Milenio MULTIMAT project. F. Gracia acknowledges support from ANID through the project ANID/FONDAP/15110019.

Muestra la fuente de financiamiento declarada en la publicación.