Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Pressure-Driven Poiseuille Flow Inherited From Mesozoic Mantle Circulation Led to the Eocene Separation of Australia and Antarctica
Indexado
WoS WOS:000644658600043
Scopus SCOPUS_ID:85105835676
DOI 10.1029/2020JB019945
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The separation between Australia and Antarctica occurred during the final stages of the break-up of Pangea. Reconstructions of the rifting of the Australian plate away from Antarctica show fast spreading rates since Mid-Eocene (45 Ma). These reconstructions can be used to understand and quantify the forces driving the Australia/Antarctica separation, and to test hypotheses on mechanisms that may be of shallow (i.e., lithosphere) or deep (i.e., mantle) origin. Analytical calculations indicate that plate-boundary forces are highly unlikely to be a plausible candidate to explain such a separation. Thus, we use a recently developed global coupled models of mantle and lithosphere dynamics, here we show that this event, whose kinematics are reproduced in our models within the bounds of the reconstruction uncertainties, owes to a significant degree to the pressure-driven asthenospheric Poiseuille flow associated with the mantle buoyancy field inherited from viscous circulation history throughout the Mesozoic. On the contrary, in simulations when such a buoyancy field is replaced by another one resulting from a random distribution of mantle temperature-thus not representative of Earth's mantle circulation history-the rapid northward motion of Australia does not occur. Similarly, suppressing contemporaneous plate-boundary processes (i.e., subduction of the Pacific ridge at the Aleutians and healing of the India-Australia ridge) from our models does not have a noticeable effect on the Australia-Antarctica kinematics. Thus, a pressure-driven Poiseuille mantle flow must be considered, at least in this example and possible elsewhere, as a main driver of plate tectonics.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geochemistry & Geophysics
Scopus
Geochemistry And Petrology
Earth And Planetary Sciences (Miscellaneous)
Space And Planetary Science
Geophysics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 STOTZ, INGO LEONARDO Hombre Ludwig Maximilians Univ Munchen - Alemania
Ludwig-Maximilians-Universität München - Alemania
2 TASSAR-ODDO, ANDRES Hombre Universidad de Concepción - Chile
3 Iaffaldano, G. Hombre Univ Copenhagen - Dinamarca
Københavns Universitet - Dinamarca

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
Instituto Antarctico Chileno
CONICYT Becas-Chile scholarship
Københavns Universitet
Ludwig-Maximilians-Universitat Munchen
Syddansk Universitet
Projekt DEAL
Instituto Antarctico Chileno (INACH)
IGN at the University of Copenhagen

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Authors acknowledge the support and funding provided by the Instituto Antarctico Chileno (INACH). ILS acknowledges support from CONICYT Becas-Chile scholarship and from IGN at the University of Copenhagen. The authors are grateful to the editor (Paul Tregoning), the associate editor, Adrian Lenardic, and an anonymous reviewer for their careful and constructive comments. Numerical simulations were undertaken at the ABACUS2.0 at DeiC National HPC Centre at the University of Southern Denmark and at the TETHYS-2G at the Ludwig Maximillian University of Munich, Germany. Open access funding enabled and organized by Projekt DEAL.
Authors acknowledge the support and funding provided by the Instituto Antarctico Chileno (INACH). ILS acknowledges support from CONICYT Becas?Chile scholarship and from IGN at the University of Copenhagen. The authors are grateful to the editor (Paul Tregoning), the associate editor, Adrian Lenardic, and an anonymous reviewer for their careful and constructive comments. Numerical simulations were undertaken at the ABACUS2.0 at DeiC National HPC Centre at the University of Southern Denmark and at the TETHYS-2G at the Ludwig Maximillian University of Munich, Germany. Open access funding enabled and organized by Projekt DEAL.

Muestra la fuente de financiamiento declarada en la publicación.