Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVE.103.L050201 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We investigate the influence of spatially homogeneous multiplicative noise on propagating dissipative solitons (DSs) of the cubic complex Ginzburg-Landau equation stabilized by nonlinear gradient terms. Here we focus on the nonlinear gradient terms, in particular on the influence of the Raman term and the delayed nonlinear gain. We show that a fairly small amount of multiplicative noise can lead to a change in the mean velocity for such systems. This effect is exclusively due to the presence of the stabilizing nonlinear gradient terms. For a range of parameters we find a velocity change proportional to the noise intensity for the Raman term and for delayed nonlinear gain. We note that the dissipative soliton decreases the modulus of its velocity when only one type of nonlinear gradient is present. We present a straightforward mean field analysis to capture this simple scaling law. At sufficiently high noise strength the nonlinear gradient stabilized DSs collapse.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DESCALZI-MUNOZ, ORAZIO DANTE | Hombre |
Universidad de Los Andes, Chile - Chile
UNIV BAYREUTH - Alemania Universität Bayreuth - Alemania |
| 2 | CARTES-MORAGA, CARLOS GABRIEL | Hombre |
Universidad de Los Andes, Chile - Chile
|
| 3 | Brand, Helmut R. | Hombre |
UNIV BAYREUTH - Alemania
Universität Bayreuth - Alemania |