Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Simple hemogram to support the decision-making of COVID-19 diagnosis using clusters analysis with self-organizing maps neural network
Indexado
WoS WOS:000651338100001
Scopus SCOPUS_ID:85105987791
DOI 10.1007/S00500-021-05810-5
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is related to new coronavirus disease (COVID-19) has mobilized several scientifics to explore clinical data using soft-computing approaches. In the context of machine learning, previous studies have explored supervised algorithms to predict and support diagnosis based on several clinical parameters from patients diagnosed with and without COVID-19. However, in most of them the decision is based on a "black-box" method, making it impossible to discover the variable relevance in decision making. Hence, in this study, we introduce a non-supervised clustering analysis with neural network self-organizing maps (SOM) as a strategy of decision-making. We propose to identify potential variables in routine blood tests that can support clinician decision-making during COVID-19 diagnosis at hospital admission, facilitating rapid medical intervention. Based on SOM features (visual relationships between clusters and identification of patterns and behaviors), and using linear discriminant analysis , it was possible to detect a group of units of the map with a discrimination power around 83% to SARS-CoV-2-positive patients. In addition, we identified some variables in admission blood tests (Leukocytes, Basophils, Eosinophils, and Red cell Distribution Width) that, in combination had strong influence in the clustering performance, which could assist a possible clinical decision. Thus, although with limitations, we believe that SOM can be used as a soft-computing approach to support clinician decision-making in the context of COVID-19.

Revista



Revista ISSN
Soft Computing 1432-7643

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 de Souza, Alexandra A. Mujer Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil
2 de Almeida, Danilo Candido Hombre Univ Fed Sao Paulo - Brasil
Universidade Federal de São Paulo - Brasil
2 Almeida, Danilo Candido de Hombre Universidade Federal de São Paulo - Brasil
3 Barcelos, Thiago S. - Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil
4 Bortoletto, Rodrigo Campos Hombre Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil
5 MUNOZ-SOTO, ROBERTO FELIPE Hombre Universidad de Valparaíso - Chile
6 Waldman, Hello - FEEC Unicamp - Brasil
Universidade Estadual de Campinas - Brasil
6 Waldman, Helio Hombre Universidade Estadual de Campinas - Brasil
7 Goes, Miguel Angelo Hombre Univ Fed Sao Paulo - Brasil
Universidade Federal de São Paulo - Brasil
8 Silva, Leandro A. Hombre Mackenzie Presbiterian Univ - Brasil
Universidade Presbiteriana Mackenzie - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fundação de Amparo à Pesquisa do Estado de São Paulo
FAPESP, Brazil
Hospital do Rim, Fundacao Oswaldo Ramos (Sao Paulo, Brazil)
Albert Einstein Hospital
Fundação Oswaldo Ramos

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially supported by Fapesp Proc. 2015/243417, Brazil, and by Hospital do Rim, Fundacao Oswaldo Ramos (Sao Paulo, Brazil).
The authors acknowledge the support of Fapesp Proc. 2015/24341-7, Hospital do Rim, Fundação Oswaldo Ramos (São Paulo, Brazil) and the Albert Einstein Hospital (São Paulo, Brazil) for providing the public database in the digital platform Kaggle

Muestra la fuente de financiamiento declarada en la publicación.