Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00500-021-05810-5 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is related to new coronavirus disease (COVID-19) has mobilized several scientifics to explore clinical data using soft-computing approaches. In the context of machine learning, previous studies have explored supervised algorithms to predict and support diagnosis based on several clinical parameters from patients diagnosed with and without COVID-19. However, in most of them the decision is based on a "black-box" method, making it impossible to discover the variable relevance in decision making. Hence, in this study, we introduce a non-supervised clustering analysis with neural network self-organizing maps (SOM) as a strategy of decision-making. We propose to identify potential variables in routine blood tests that can support clinician decision-making during COVID-19 diagnosis at hospital admission, facilitating rapid medical intervention. Based on SOM features (visual relationships between clusters and identification of patterns and behaviors), and using linear discriminant analysis , it was possible to detect a group of units of the map with a discrimination power around 83% to SARS-CoV-2-positive patients. In addition, we identified some variables in admission blood tests (Leukocytes, Basophils, Eosinophils, and Red cell Distribution Width) that, in combination had strong influence in the clustering performance, which could assist a possible clinical decision. Thus, although with limitations, we believe that SOM can be used as a soft-computing approach to support clinician decision-making in the context of COVID-19.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | de Souza, Alexandra A. | Mujer |
Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil |
| 2 | de Almeida, Danilo Candido | Hombre |
Univ Fed Sao Paulo - Brasil
Universidade Federal de São Paulo - Brasil |
| 2 | Almeida, Danilo Candido de | Hombre |
Universidade Federal de São Paulo - Brasil
|
| 3 | Barcelos, Thiago S. | - |
Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil |
| 4 | Bortoletto, Rodrigo Campos | Hombre |
Fed Inst Educ Sci & Technol Sao Paulo - Brasil
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Brasil |
| 5 | MUNOZ-SOTO, ROBERTO FELIPE | Hombre |
Universidad de Valparaíso - Chile
|
| 6 | Waldman, Hello | - |
FEEC Unicamp - Brasil
Universidade Estadual de Campinas - Brasil |
| 6 | Waldman, Helio | Hombre |
Universidade Estadual de Campinas - Brasil
|
| 7 | Goes, Miguel Angelo | Hombre |
Univ Fed Sao Paulo - Brasil
Universidade Federal de São Paulo - Brasil |
| 8 | Silva, Leandro A. | Hombre |
Mackenzie Presbiterian Univ - Brasil
Universidade Presbiteriana Mackenzie - Brasil |
| Fuente |
|---|
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| FAPESP, Brazil |
| Hospital do Rim, Fundacao Oswaldo Ramos (Sao Paulo, Brazil) |
| Albert Einstein Hospital |
| Fundação Oswaldo Ramos |
| Agradecimiento |
|---|
| This work was partially supported by Fapesp Proc. 2015/243417, Brazil, and by Hospital do Rim, Fundacao Oswaldo Ramos (Sao Paulo, Brazil). |
| The authors acknowledge the support of Fapesp Proc. 2015/24341-7, Hospital do Rim, Fundação Oswaldo Ramos (São Paulo, Brazil) and the Albert Einstein Hospital (São Paulo, Brazil) for providing the public database in the digital platform Kaggle |