Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data
Indexado
WoS WOS:000651501000001
Scopus SCOPUS_ID:85105912636
DOI 10.1111/EVA.13240
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Through imputation of genotypes, genome-wide association study (GWAS) and genomic prediction (GP) using whole-genome sequencing (WGS) data are cost-efficient and feasible in aquaculture breeding schemes. The objective was to dissect the genetic architecture of growth traits under chronic heat stress in rainbow trout (Oncorhynchus mykiss) and to assess the accuracy of GP based on imputed WGS and different preselected single nucleotide polymorphism (SNP) arrays. A total of 192 and 764 fish challenged to a heat stress experiment for 62 days were genotyped using a customized 1 K and 26 K SNP panels, respectively, and then, genotype imputation was performed from a low-density chip to WGS using 102 parents (36 males and 66 females) as the reference population. Imputed WGS data were used to perform GWAS and test GP accuracy under different preselected SNP scenarios. Heritability was estimated for body weight (BW), body length (BL) and average daily gain (ADG). Estimates using imputed WGS data ranged from 0.33 +/- 0.05 to 0.55 +/- 0.05 for growth traits under chronic heat stress. GWAS revealed that the top five cumulatively SNPs explained a maximum of 0.94%, 0.86% and 0.51% of genetic variance for BW, BL and ADG, respectively. Some important functional candidate genes associated with growth-related traits were found among the most important SNPs, including signal transducer and activator of transcription 5B and 3 (STAT5B and STAT3, respectively) and cytokine-inducible SH2-containing protein (CISH). WGS data resulted in a slight increase in prediction accuracy compared with pedigree-based method, whereas preselected SNPs based on the top GWAS hits improved prediction accuracies, with values ranging from 1.2 to 13.3%. Our results support the evidence of the polygenic nature of growth traits when measured under heat stress. The accuracies of GP can be improved using preselected variants from GWAS, and the use of WGS marginally increases prediction accuracy.

Revista



Revista ISSN
Evolutionary Applications 1752-4571

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Evolutionary Biology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Yoshida, Grazyella M. - Universidad de Chile - Chile
2 Yanez, J. M. Hombre Universidad de Chile - Chile
Núcleo Milenio de Salmónidos Invasores - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Ministerio de Economía, Fomento y Turismo
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Ministerio de Economía, Fomento y Turismo, Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Fondo Nacional de Desarrollo Cientifico y Tecnologico, Grant/Award Number: 1171720 and 3190553; Ministerio de Economia, Fomento y Turismo
We are grateful to financially supported by FONDECYT Regular (No. 1171720) and FONDECYT/CONICYT Postdoctoral Grant (No. 3190553). GMY is supported by FONDECYT/CONICYT Postdoctoral Grant (No. 3190553), and JMY is grant supported by Núcleo Milenio INVASAL funded by Chile's Government Programme, Iniciativa Cientifica Milenio from Ministerio de Economia, Fomento y Turismo. We thank Effigen S.A. for providing the rainbow trout data set.

Muestra la fuente de financiamiento declarada en la publicación.