Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.IFACOL.2020.12.2767 | ||||
| Año | 2020 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Gear faults contribute to a significant portion of failures in wind turbine system. As such, condition monitoring and fault detection of these components assist in maintenance scheduling; hence, preventing catastrophic failures of the gearbox. This paper introduces a new hybrid fault detection approach to detect gear faults in wind turbines. to accomplish this task, vibration signals are collected and used to extract various time-domain features. Next, a Dynamic Principle Component Analysis (DPCA) is adaptively employed to identify failure dynamics by reducing the time-domain feature dimension. Following that, a Support Vector Machine (SVM) is implemented to detect and isolate gear faults. Experimental test studies with ten-year historical data of three wind farms in Canada are conducted. Test results indicate that the proposed hybrid approach performs superior compared to DPCA using Multilayer Perceptron (MLP) Neural Networks (NNs). Copyright (C) 2020 The Authors.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kordestani, Mojtaba | Hombre |
Univ Windsor - Canadá
University of Windsor - Canadá |
| 2 | Rezamand, Milad | Hombre |
Univ Windsor - Canadá
University of Windsor - Canadá |
| 3 | ORCHARD-CONCHA, MARCOS EDUARDO | Hombre |
Universidad de Chile - Chile
|
| 4 | Carriveau, Rupp | - |
Univ Windsor - Canadá
University of Windsor - Canadá |
| 5 | Ting, David S. -K. | Hombre |
Univ Windsor - Canadá
University of Windsor - Canadá |
| 6 | Saif, Mehrdad | Hombre |
Univ Windsor - Canadá
University of Windsor - Canadá |
| Fuente |
|---|
| Natural Sciences and Engineering Research Council of Canada (NSERC) |
| Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project, CONICYT |
| Ontario Centres of Excellence (OCE) |
| Kruger Energy Inc. |
| Kruger Energy |
| Wind Energy Institute of Canada |
| Enbridge Inc. |
| Agradecimiento |
|---|
| The authors acknowledge the support of Kruger Energy Inc. in this research work. Particularly, the efforts and insights of Mr. J.J. Davis are noted. This project is sponsored by Enbridge Inc., Kruger Energy, and the Wind Energy Institute of Canada. Significant funding has also been granted by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Centres of Excellence (OCE). Dr. Marcos Orchard appreciates the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, CONICYT. |