Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1142/S0218202521500196 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In Lipschitz two- and three-dimensional domains, we study the existence for the so-called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to H-1(pi, Omega), where pi is a weight in the Muckenhoupt class A(2) that is regular near the boundary. We propose a finite element scheme and, under the assumption that the domain is convex and pi(-1) is an element of A(1), show its convergence. In the case that the thermal diffusion and viscosity are constants, we propose an a posteriori error estimator and show its reliability. We also explore efficiency estimates.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Allendes, Alejandro | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | OTAROLA-PASTEN, ENRIQUE HOMERO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Salgado, Abner J. | Hombre |
UNIV TENNESSEE - Estados Unidos
The University of Tennessee, Knoxville - Estados Unidos |
| Fuente |
|---|
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| NSF |
| Conicyt through Fondecyt |
| Directorate for Mathematical and Physical Sciences |
| Agradecimiento |
|---|
| AA has been partially supported by CONICYT through FONDECYT project 1210729. EO has been partially supported by CONICYT through FONDECYT project 11180193. AJS has been partially supported by NSF grant DMS-1720213. |
| AA has been partially supported by CONICYT through FONDECYT project 1210729. EO has been partially supported by CONICYT through FONDECYT project 11180193. AJS has been partially supported by NSF grant DMS-1720213. |