Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ASCOM.2021.100461 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The search for exoplanets has evolved from case by case data inspection to automatic pattern recognition methods for processing a very large number of light curves. For this reason, the use of machine learning techniques has become a common practice in the field, where deep learning models are now in the spotlight as a promising leap forward towards automation. However, despite being faster than manual inspection, they usually still need hand-crafted features to achieve good results. Moreover, not all methods allow real world data where a large portion of the data is missing or at least is not regularly sampled. In this paper, we propose a method that only requires the raw light curve to identify exoplanets without the need of additional metadata or specific formats for the time series. We transform unevenly-sampled time series (light curves) of variable length into a 2-channel fixed-sized image using Markov Transition Field, which feeds a convolutional neural network that classifies candidate transients. We conducted experiments using the Kepler Mission dataset, identifying two key results: (1) the method is competitive in terms of performance to the state-of-the-art alternatives, yet it is simpler and faster. (2) A Markov Transition Field can be used as an effective stand-alone data product for analyzing unevenly-sampled transient light curves. (C) 2021 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bugueno, M. | Mujer |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Molina, G. | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Mena, Francisco | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | Olivares, Patricio | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 5 | ARAYA-LOPEZ, MAURICIO ALEJANDRO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Universidad Técnica Federico Santa María |
| AC3E |
| ANID |
| ANID PIA/APOYO |
| ANID-Basal |
| Programa de Iniciacion Cientifica PIIC-DGIP of Universidad Tecnica Federico Santa Maria, Chile, ANID-Basal Project |
| Universidad T?cnica Federico Santa Mar?a |
| Agradecimiento |
|---|
| This research was possible due to the funding of Programa de Iniciacion Cientifica PIIC-DGIP of Universidad Tecnica Federico Santa Maria, Chile, ANID-Basal Project FB0008 (AC3E) and ANID PIA/APOYO AFB180002 (CCTVal) . |
| This research was possible due to the funding of Programa de Iniciaci?n Cient?fica PIIC-DGIP of Universidad T?cnica Federico Santa Mar?a, Chile, ANID-Basal Project FB0008 (AC3E) and ANID PIA/APOYO AFB180002 (CCTVal). |