Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00170-021-07469-6 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint's mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the prediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed to determine an empirical equation for predicting the UTS, and contours maps determine the main interactions. A total of 48 specimens were employed to train the regressors; the 5-fold cross-validation methodology was used to find the algorithm with greater precision. The gradient boosting regressor (GBR), support vector regressor (SVR), and Gaussian processes regressors present the highest precision with a less than 3% percentage error for the laser-assisted rotary friction welding process. The GBR and SVR capability exceed the RSM's accuracy with a coefficient of determination (R-2) greater than 90.9 versus 83.2%, respectively.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Barrionuevo, Germán Omar | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Mullo, José L. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Inst Super Tecnol Ciudad Valencia ISTCV - Ecuador Instituto Superior Tecnológico Ciudad de Valencia (ISTCV) - Ecuador |
| 2 | Mullo, José Luis | Hombre |
Pontificia Universidad Católica de Chile - Chile
Instituto Tecnológico Superior Ciudad de Valencia - Ecuador Inst Super Tecnol Ciudad Valencia ISTCV - Ecuador Instituto Superior Tecnológico Ciudad de Valencia (ISTCV) - Ecuador |
| 3 | RAMOS-GREZ, JORGE ANDRES | Hombre |
Pontificia Universidad Católica de Chile - Chile
Research Center for Nanotechnology and Advanced Materials (CIEN-UC) - Chile Center for Nanotechnology and Advanced Materials CIEN-UC - Chile |
| Fuente |
|---|
| SENESCYT |
| Secretaría de Educación Superior, Ciencia, Tecnología e Innovación |
| CIEN-UC |
| ANID Fondecyt |
| ANID FONDECYT grant |