Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/COCV/2021063 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this article, we study the null-controllability of a heat equation in a domain composed of two media of different constant conductivities. In particular, we are interested in the behavior of the system when the conductivity of the medium on which the control does not act goes to infinity, corresponding at the limit to a perfectly conductive medium. In that case, and under suitable geometric conditions, we obtain a uniform null-controllability result. Our strategy is based on the analysis of the controllability of the corresponding wave operators and the transmutation technique, which explains the geometric conditions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Darde, Jeremi | - |
Univ Toulouse - Francia
Université Toulouse III - Paul Sabatier - Francia Institut de Mathématiques de Toulouse - Francia |
| 2 | Ervedoza, Sylvain | Hombre |
Univ Bordeaux - Francia
Université de Bordeaux - Francia |
| 3 | Morales, Roberto | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agence Nationale de la Recherche |
| Agence Nationale de la Recherche, project IFSMACS |
| CIMI Labex, Toulouse, France |
| MATH AmSud program ACIPDE |
| CIMI Labex |
| Agradecimiento |
|---|
| The second author has been supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010. The first and second authors have been supported by the CIMI Labex, Toulouse, France, under grant ANR-11-LABX-0040-CIMI and the MATH AmSud program ACIPDE. The third author has been supported by FONDECYT 3200830. |
| ∗The second author has been supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010. The first and second authors have been supported by the CIMI Labex, Toulouse, France, under grant ANR-11-LABX-0040-CIMI and the MATH AmSud program ACIPDE. The third author has been supported by FONDECYT 3200830. |