Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Intermolecular driving forces on the adsorption of DNA/RNA nucleobases to graphene and phosphorene: An atomistic perspective from DFT calculations
Indexado
WoS WOS:000636695200135
Scopus SCOPUS_ID:85098884108
DOI 10.1016/J.MOLLIQ.2020.115229
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Graphene and phosphorene show a strong affinity towards DNA/RNA nucleobases, serving as promising materials to be integrated as part of bioinorganic interfaces for either self-assembly, sensing, or sequencing of DNA/RNA constituents. Here, the intermolecular driving forces determining the adsorption of DNA/RNA nucleobases and base-pairs onto graphene and phosphorene are studied with density functional theory (DFT) calculations in the gas phase and solution with a polarizable continuum model (PCM). The formed complexes are studied through binding analyses (adsorption energy, AIM, IGM), charge transfer, and energy decomposition analyses based on absolutely localized molecular orbitals (ALMO-EDA). It is found that nucleobases are adsorbed with similar stability onto graphene and phosphorene in stacked patterns. Electrostatics and dispersion effects are the primary stabilizing intermolecular forces, standing for similar to 85% of the stabilizing energy. Dispersion is higher than electrostatic effects for nucleobase-Graphene complexes; conversely, nucleobase-Phosphorene complexes show a greater contribution from electrostatics to the stability. Moreover, solvent effects lead to energy destabilization of complexes with respect to the gas phase due to the relative difference in the solute-solvent polarity of the components, which are higher for those complexes stabilized by electrostatic forces. Consequently, the adsorption on phosphorene is more destabilized than graphene in aqueous solution; while, dispersion/electrostatic effects turn almost balanced for nucleobase-Phosphorene complexes in solution as a result of the decrease in the magnitude of electrostatic interactions. Otherwise, an extra energy lowering is reached by adsorption with phosphorene due to the high adsorbent polarizability and its response upon nucleobase adsorption; nevertheless, Pauli repulsion compensates all the stabilizing effects due to the larger electron density of the phosphorene surface compared to graphene. Finally, physical effects along the dissociation path reveal the dominant factors on the stabilization of the nucleobase-Graphene(Phosphorene) complexes during the entire adsorption process. (C) 2020 Elsevier B.V. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Physical
Physics, Atomic, Molecular & Chemical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 CORTES-ARRIAGADA, DIEGO ANDRES Hombre Universidad Tecnológica Metropolitana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDEQUIP
CONICYT/FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
NLHPC
CONICYT/FONDEQUIP

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
D.C-A thanks the financial support of the CONICYT/FONDECYT project #11170289 and computational resources through the CONICYT/FONDEQUIP project EQM180180. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). There are no competing interests to declare by the authors of this article.
D.C-A thanks the financial support of the CONICYT/FONDECYT project # 11170289 and computational resources through the CONICYT/FONDEQUIP project EQM180180. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). There are no competing interests to declare by the authors of this article.

Muestra la fuente de financiamiento declarada en la publicación.