Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fall Detection and Activity Recognition Using Human Skeleton Features
Indexado
WoS WOS:000633631600001
Scopus SCOPUS_ID:85101759581
DOI 10.1109/ACCESS.2021.3061626
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Human activity recognition has attracted the attention of researchers around the world. This is an interesting problem that can be addressed in different ways. Many approaches have been presented during the last years. These applications present solutions to recognize different kinds of activities such as if the person is walking, running, jumping, jogging, or falling, among others. Amongst all these activities, fall detection has special importance because it is a common dangerous event for people of all ages with a more negative impact on the elderly population. Usually, these applications use sensors to detect sudden changes in the movement of the person. These kinds of sensors can be embedded in smartphones, necklaces, or smart wristbands to make them "wearable" devices. The main inconvenience is that these devices have to be placed on the subjects' bodies. This might be uncomfortable and is not always feasible because this type of sensor must be monitored constantly, and can not be used in open spaces with unknown people. In this way, fall detection from video camera images presents some advantages over the wearable sensor-based approaches. This paper presents a vision-based approach to fall detection and activity recognition. The main contribution of the proposed method is to detect falls only by using images from a standard video-camera without the need to use environmental sensors. It carries out the detection using human skeleton estimation for features extraction. The use of human skeleton detection opens the possibility for detecting not only falls but also different kind of activities for several subjects in the same scene. So this approach can be used in real environments, where a large number of people may be present at the same time. The method is evaluated with the UP-FALL public dataset and surpasses the performance of other fall detection and activities recognition systems that use that dataset.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ramirez, Heilym - Pontificia Universidad Católica de Valparaíso - Chile
2 VELASTIN-CARROZA, SERGIO ALEJANDRO Hombre Queen Mary Univ London - Reino Unido
Univ Carlos III Madrid - España
Queen Mary University of London - Reino Unido
Universidad Carlos III de Madrid - España
3 Meza, Ignacio Hombre Pontificia Universidad Católica de Valparaíso - Chile
4 Fabregas, Ernesto Hombre Univ Nacl Educ Distancia - España
Universidad Nacional de Educación a Distancia - España
5 Makris, Dimitrios Hombre KINGSTON UNIV - Reino Unido
Kingston University - Reino Unido
6 FARIAS-CASTRO, GONZALO ALBERTO Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Chilean Ministry of Education
Chilean Ministry of Education under Project FONDECYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Chilean Ministry of Education under Project FONDECYT 1191188.
This work was supported in part by the Chilean Ministry of Education under Project FONDECYT 1191188.

Muestra la fuente de financiamiento declarada en la publicación.