Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/PROC/15390 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we consider a class of non-local in time telegraph equations. Recently, the second author and Vergara proved that the fundamental solutions of such equations can be interpreted as the probability density function of a stochastic process. We study the asymptotic behavior of the variance of this process at large and short times. In this context, we develop a method to construct new examples such the variance has a slowly growth behavior, extending the earlier results. Finally, we show that our approach can be adapted to define new integro-differential operators which are interesting in sub-diffusion processes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Alegria, Francisco | Hombre |
Universidad Austral de Chile - Chile
Universidad de La Frontera - Chile |
| 2 | POZO-VERA, JUAN CARLOS RIVAS, CRISTOBAL | Hombre |
Universidad de Chile - Chile
|
| Agradecimiento |
|---|
| The second author was partially supported by Fondecyt grant 1181084. |
| Received by the editors February 27, 2020, and, in revised form, September 14, 2020. 2020 Mathematics Subject Classification. Primary 45K05, 34K25, 35R10. The second author was partially supported by Fondecyt grant 1181084. |