Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Thermal characterization and stability analysis of aqueous ZnO-based nanofluids numerically implemented in microchannel heat sinks
Indexado
WoS WOS:000624915700005
Scopus SCOPUS_ID:85098777206
DOI 10.1016/J.TSEP.2020.100792
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Water-based nanofluids prepared with ZnO nanoparticles (<= 17 nm) were characterized. The thermal conductivity and viscosity were measured as a function of temperature (278-303 K), for two ZnO concentration (1wt% and 3wt%) establishing that, whereas the nanofluid prepared with a concentration of 1wt% registered an average improvement of the thermal conductivity of 10.31% at a concentration of 3wt%, the viscosity decreased an average of 5.03% respect to the base fluid. An analysis of the stability of these nanofluids was carried out via UV-vis, finding that for a concentration of 3wt% the stability is better, since it requires 168 h to decrease its absorbance in the same amount as the sample of 1wt%. Additionally, the laminar three-dimensional flow of these nanofluids has been numerically studied considering symmetric microchannels (200 <= Re <= 1200) of fixed-width rectangular cross-section (283 mu m) and three different heights (200 mu m, 600 mu m, and 400 mu m), subjected to a constant heat flux in the lower wall (50 W/cm(2)). The microchannels have been simulated considering the properties of the nanofluid variable with respect to temperature through experimentally determined models (for 1wt% and 3wt%), finding that thermal conductivity improves mostly for a concentration of 1wt%, registering an increase in average 10.31% in the studied temperature range.The numerical results showed that the use of nanofluids favors heat transfer at low Reynolds numbers with the maximum improvement in the coefficient of heat transfer by convection (42.33%). A decrease in temperature of the base of the microchannel is also observed, which is more significant at low Reynolds numbers for a concentration of 1wt%. In the case of MCH-1 with Re = 200, the decrease in the mean temperature of the lower wall is 5.65% (20.45 K), a value that decreases to 0.90% (2.94 K) for Re = 1200. This configuration also offers the highest net heat gain, considering the increase in the coefficient of friction produced by the incorporation of ZnO nanoparticles. Finally considering the experimental studies of the thermal properties and stability of nanofluids, and the numerical results associated with the thermal and fluid-dynamic performance of the microchannels, a methodology is proposed to carry out a comprehensive approach to the application of nanofluids in microchannels.

Revista



Revista ISSN
2451-9049

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Thermodynamics
Engineering, Mechanical
Mechanics
Energy & Fuels
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MARTINEZ-ARANZA, VICTOR JULIO Hombre Universidad de Santiago de Chile - Chile
2 Lozano-Steinmetz, Felipe Hombre Universidad de Santiago de Chile - Chile
3 VASCO-CALLE, DIEGO ANDRES Hombre Universidad de Santiago de Chile - Chile
4 ZAPATA-RAMIREZ, PAULA ANDREA Mujer Universidad de Santiago de Chile - Chile
5 Chi-Duran, Ignacio Hombre Universidad de Santiago de Chile - Chile
Millennium Inst Res Opt MIRO - Chile
Instituto Milenio de Investigación en Óptica - Chile
6 Singh, Dinesh Pratap Hombre Universidad de Santiago de Chile - Chile
Millennium Inst Res Opt MIRO - Chile
Instituto Milenio de Investigación en Óptica - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Santiago de Chile
Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile
Direccion de Investigacion, Cientifica y Tecnologica, Dicyt, Universidad de Santiago de Chile
Proyecto Codigo, Direccion de Investigacion, Cientifica y Tecnologica, Dicyt, Universidad de Santiago de Chile
Departamento de Ingenieria Mecanica

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge with thanks the support through Proyecto Codigo 051916VC_DAS, Direccion de Investigacion, Cientifica y Tecnologica, Dicyt, Universidad de Santiago de Chile. F. Lozano acknowledges the Departamento de Ingenieria Mecanica for their support through the fundings of Plan Operativo 2019.
The authors acknowledge with thanks the support through Proyecto C?digo 051916VC_DAS, Direcci?n de Investigaci?n, Cient?fica y Tecnol?gica, Dicyt, Universidad de Santiago de Chile. F. Lozano acknowledges the Departamento de Ingenier?a Mec?nica for their support through the fundings of Plan Operativo 2019.

Muestra la fuente de financiamiento declarada en la publicación.