Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.DISC.2021.112303 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let G be a graph on n vertices and lambda(1), lambda(2), . . . , lambda(n) its eigenvalues. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. In this paper, we present some new lower bounds for the Estrada index of graphs and in particular of bipartite graphs that only depend on the number of vertices, the number of edges, Randic index, maximum and minimum degree and diameter. (C) 2021 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rodriguez, Jonnathan | - |
Universidad de Antofagasta - Chile
|
| 2 | Aguayo, Juan L. | Hombre |
Universidad Austral de Chile - Chile
|
| 3 | CARMONA-HERRERA, JUAN ROBERTO | Hombre |
Universidad Austral de Chile - Chile
|
| 4 | Jahanbani, Akbar | Hombre |
Azarbaijan Shahid Madani Univ - Iran
Azarbaijan Shahid Madani University - Iran |
| Fuente |
|---|
| MINEDUC-UA |
| Universidad de Antofagasta |
| Initiation Program in Research - Universidad de Antofagasta |
| Agradecimiento |
|---|
| J. Rodriguez Z. was supported by MINEDUC-UA project, code ANT-1899 and Funded by the Initiation Program in Research - Universidad de Antofagasta, INI-19-06. |
| J. Rodríguez Z. was supported by MINEDUC-UA project, code ANT-1899 and Funded by the Initiation Program in Research - Universidad de Antofagasta , INI-19-06 . |