Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/MNRAS/STAB320 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Machine learning has achieved an important role in the automatic classification of variable stars, and several classifiers have been proposed over the last decade. These classifiers have achieved impressive performance in several astronomical catalogues. However, some scientific articles have also shown that the training data therein contain multiple sources of bias. Hence, the performance of those classifiers on objects not belonging to the training data is uncertain, potentially resulting in the selection of incorrect models. Besides, it gives rise to the deployment of misleading classifiers. An example of the latter is the creation of open-source labelled catalogues with biased predictions. In this paper, we develop a method based on an informative marginal likelihood to evaluate variable star classifiers. We collect deterministic rules that are based on physical descriptors of RR Lyrae stars, and then, to mitigate the biases, we introduce those rules into the marginal likelihood estimation. We perform experiments with a set of Bayesian logistic regressions, which are trained to classify RR Lyraes, and we found that our method outperforms traditional non-informative cross-validation strategies, even when penalized models are assessed. Our methodology provides a more rigorous alternative to assess machine learning models using astronomical knowledge. From this approach, applications to other classes of variable stars and algorithmic improvements can be developed.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Perez-Galarce, Francisco | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Pichara, Karim E. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile |
| 3 | Huijse, P. | Hombre |
Instituto Milenio de Astrofísica - Chile
Universidad Austral de Chile - Chile |
| 4 | Catelan, Marcio | Hombre |
Instituto Milenio de Astrofísica - Chile
Pontificia Universidad Católica de Chile - Chile |
| 5 | MERY-QUIROZ, DOMINGO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Proyecto Basal |
| Conicyt-Chile, through FONDECYT |
| ANID |
| National Agency for Research and Development (ANID) |
| ANID'sMillennium Science Initiative |
| Agradecimiento |
|---|
| We acknowledge the support from CONICYT-Chile, through the FONDECYT Regular project number 1180054. F. Perez-Galarce acknowledges the support from National Agency for Research and Development (ANID), through Scholarship Program/Doctorado Nacional/2017-21171036. Support for M. Catelan is provided by ANID'sMillennium Science Initiative through grant ICN12 120009, awarded to the Millennium Institute of Astrophysics (MAS); by Proyecto Basal AFB-170002; and by FONDECYT grant #1171273. P. Huijse acknowledges financial support from project ANID's project PAI 79170017. |