Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Co-Training for Visual Object Recognition Based on Self-Supervised Models Using a Cross-Entropy Regularization
Indexado
WoS WOS:000642961400001
Scopus SCOPUS_ID:85104327768
DOI 10.3390/E23040423
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Automatic recognition of visual objects using a deep learning approach has been successfully applied to multiple areas. However, deep learning techniques require a large amount of labeled data, which is usually expensive to obtain. An alternative is to use semi-supervised models, such as co-training, where multiple complementary views are combined using a small amount of labeled data. A simple way to associate views to visual objects is through the application of a degree of rotation or a type of filter. In this work, we propose a co-training model for visual object recognition using deep neural networks by adding layers of self-supervised neural networks as intermediate inputs to the views, where the views are diversified through the cross-entropy regularization of their outputs. Since the model merges the concepts of co-training and self-supervised learning by considering the differentiation of outputs, we called it Differential Self-Supervised Co-Training (DSSCo-Training). This paper presents some experiments using the DSSCo-Training model to well-known image datasets such as MNIST, CIFAR-100, and SVHN. The results indicate that the proposed model is competitive with the state-of-art models and shows an average relative improvement of 5% in accuracy for several datasets, despite its greater simplicity with respect to more recent approaches.

Revista



Revista ISSN
Entropy 1099-4300

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Multidisciplinary
Scopus
Information Systems
Electrical And Electronic Engineering
Mathematical Physics
Physics And Astronomy (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Diaz, Gabriel Hombre Universidad Nacional Andrés Bello - Chile
2 PERALTA-MARQUEZ, BILLY MARK Hombre Universidad Nacional Andrés Bello - Chile
3 Caro, Luis Hombre Universidad Católica de Temuco - Chile
4 Nicolis, Orietta Mujer Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondecyt Regular
Fondecyt regular grant

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was partially funded by Fondecyt Regular grant number 1201478.
Funding: This research was partially funded by Fondecyt Regular grant number 1201478.

Muestra la fuente de financiamiento declarada en la publicación.