Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JPAA.2020.106499 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper is a classification of vertical additive group actions on X under the assumption that X is proper over an affine variety. Then we establish a criterion as to when the infinitesimal generators of a finite collection of additive group actions on X generate a finite-dimensional Lie algebra inside the Lie algebra of derivations of X. (C) 2020 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Arzhantsev, Ivan | Hombre |
Natl Res Univ Higher Sch Econ - Rusia
National Research University Higher School of Economics - Rusia HSE University - Rusia |
| 2 | Liendo, A | Hombre |
Universidad de Talca - Chile
|
| 3 | Stasyuk, Taras | Hombre |
Lomonosov Moscow State Univ - Rusia
Lomonosov Moscow State University - Rusia |
| Agradecimiento |
|---|
| The second author was partially supported by the projects FONDECYTRegular 1160864 and 1200502. |
| The second author was partially supported by the projects FONDECYTRegular 1160864 and 1200502. |
| The first author was supported by the grant RSF 19-11-00172.The second author was partially supported by the projects FONDECYT Regular 1160864 and 1200502. |