Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Finiteness theorems for matroid complexes with prescribed topology
Indexado
WoS WOS:000589912900012
Scopus SCOPUS_ID:85091557508
DOI 10.1016/J.EJC.2020.103239
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



There are finitely many simplicial complexes (up to isomorphism) with a given number of vertices. Translating this fact to the language of h-vectors, there are finitely many simplicial complexes of bounded dimension with h(1) = k for any natural number k. In this paper we study the question at the other end of the h-vector: Are there only finitely many (d - 1)-dimensional simplicial complexes with h(d) = k for any given k? The answer is no if we consider general complexes, but we focus on three cases coming from matroids: (i) independence complexes, (ii) broken circuit complexes, and (iii) order complexes of geometric lattices. Surprisingly, the answer is yes in all three cases. (C) 2020 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Castillo, Federico Hombre Max Planck Inst Math Sci - Alemania
Max Planck Institute for Mathematics in the Sciences - Alemania
2 Samper, Jose Alejandro Hombre Pontificia Universidad Católica de Chile - Chile
2 Samper, José Alejandro Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
University of Washington
University of Kansas
Max-Planck Institute for Mathematics in the Sciences

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank Richard Stanley for interesting conversations and for pointing out the reference in his book to Theorem 5.3. Thanks to Ed Swartz for reminding us of Example 2.13. An anonymous referee pointed out the connections between geometric lattices and cosimple matroids that inspired Corollary 5.5. We are specially indebted to Isabella Novik for various interesting conversations and helpful suggestions on preliminary versions. We are grateful to the University of Washington and University of Kansas where parts of this project were carried out. The second named author also thanks the University of Miami where he was employed when most of the project was carried out. This project was completed while both authors were members of the Max-Planck Institute for Mathematics in the Sciences.

Muestra la fuente de financiamiento declarada en la publicación.