Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3150/20-BEJ1241 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the problem of designing robust numerical integration scheme of the solution of a one-dimensional SDE with non-globally Lipschitz drift and diffusion coefficients behaving as x(alpha), with alpha > 1. We propose an (semi-explicit) exponential-Euler scheme for which we obtain a theoretical convergence rate for the weak error. To this aim, we analyze the C-1,C-4 regularity of the solution of the associated backward Kolmogorov PDE using its Feynman-Kac representation and the flow derivative of the involved processes. Under some suitable hypotheses on the parameters of the model, we prove a rate of weak convergence of order one for the proposed exponential Euler scheme, and illustrate it with some numerical experiments.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bossy, Mireille | Mujer |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 2 | Jabir, Jean-Francois | Hombre |
UNIV EDINBURGH - Reino Unido
Natl Res Univ Higher Sch Econ - Rusia The University of Edinburgh - Reino Unido National Research University Higher School of Economics - Rusia HSE University - Rusia |
| 3 | Martínez Rodríguez, Kerlyns | - |
Univ Cote Azur - Francia
Universidad de Valparaíso - Chile Université Côte d'Azur - Francia |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Universidad de Valparaíso |
| CONICYT National Doctoral Scholarship |
| Russian Academic Excellence project '5-100' |
| Universidad de Valparaiso Doctoral scholarship |
| Agradecimiento |
|---|
| The third author acknowledges the support of the Universidad de Valparaiso Doctoral scholarship and the CONICYT National Doctoral scholarship No2116094. |
| The third author acknowledges the support of the Universidad de Valparaiso Doctoral scholarship and the CONICYT National Doctoral scholarship No2116094. |
| The second author acknowledges the support of the Russian Academic Excellence Project ‘5-100’. |