Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multi-label Text Classification with Multi-variate Bernoulli Model and Label Dependent Representation
Indexado
WoS WOS:000599836700001
Scopus SCOPUS_ID:85099057487
SciELO S0718-09342020000300549
DOI 10.4067/S0718-09342020000300549
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The allocation of natural language texts to one or more predefined categories or classes based on their content is an important component and a recent need in many information organization and management tasks. Automatic text classification is the task of categorizing documents to a predefined set of classes by a computational method or model. Text representation for classification purposes has been traditionally approached using a vector space model due to its simplicity and good performance. On the other hand, multi-label automatic text classification has been typically addressed either by transforming the problem under study to apply binary techniques or by adapting binary algorithms to work with multiple labels. In this article, the objective is to evaluate a term-weighting factor in the Boolean model for text representation in multi-label classification, using a mix of two approaches: problem transformation and model adaptation. This term-weighting factor and the combination of approaches in the automatic text classification was tested with four different sets of textual data used in the specialized literature and compared with alternative techniques by means of three measures of evaluation. The results present improvements of more than 10% in the performance of the classifiers, attributed to our proposal, in all the cases analyzed.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Language & Linguistics
Linguistics
Scopus
Sin Disciplinas
SciELO
Linguistics, Letters And Arts

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ALFARO-ARANCIBIA, RODRIGO MARCELO Hombre Universidad Técnica Federico Santa María - Chile
Pontificia Universidad Católica de Valparaíso - Chile
1 Rodrigo Alfaro, A. - Pontificia Universidad Católica de Valparaíso - Chile
2 ALLENDE-CID, HECTOR GABRIEL Hombre Universidad Técnica Federico Santa María - Chile
2 Héctor Allende, O. - Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.