Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/POLYM12122860 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The influence of the lateral size and the content of graphene oxide (GO) flakes in specific oxygenate functional groups on the anti-biofouling properties and performance of thin-film composite membrane (TFC) was studied. Three different multidimensional GO samples were prepared with small (500–1200 nm), medium (1200–2300 nm), and large (2300–3600 nm) size distribution, and with different degrees of oxidation (GO3 > GO2 > GO1), varying the concentration of the hydrogen peroxide amount during GO synthesis. GO1 sheets’ length have a heterogeneous size distribution containing all size groups, whilst GO2 is contained in a medium-size group, and GO3 is totally contained within a small-size group. Moreover, GO oxygenate groups were controlled. GO2 and GO3 have hydroxyl and epoxy groups at the basal plane of their sheets. Meanwhile, GO1 presented only hydroxyl groups. GO sheets were incorporated into the polyamide (PA) layer of the TFC membrane during the interfacial polymerization reaction. The incorporation of GO1 produced a modified membrane with excellent bactericidal properties and anti-adhesion capacity, as well as superior desalination performance with high water flow (133% as compared with the unmodified membrane). For GO2 and GO3, despite the significant anti-biofouling effect, a detrimental impact on desalination performance was observed. The high content of large sheets in GO2 and small sheet stacking in GO3 produced an unfavorable impact on the water flow. Therefore, the synergistic effect due to the presence of large-and small-sized GO sheets and high content of OH-functional groups (GO1) made it possible to balance the performance of the membrane.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | RODRIGUEZ-ESCALONA, BARBARA ELIDESMAR | Mujer |
Advanced Mining Technology Center - Chile
Universidad de Chile - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 2 | Armendariz-Ontiveros, Maria Magdalena | Mujer |
Instituto Tecnológico de Sonora - México
Inst Tecnol Sonora - México |
| 3 | Quezada, Rodrigo | Hombre |
Advanced Mining Technology Center - Chile
Universidad de Chile - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 3 | Arriortua, Maria | Mujer |
Universidad de Chile - Chile
|
| 4 | Huitron-Segovia, Esther A. | Mujer |
Centro de Investigación en Materiales Avanzados S.C. Parque PIIT - México
Ctr Invest Mat Avanzados SC Parque PIIT - México |
| 5 | ESTAY-CUENCA, HUMBERTO ANTONIO | Hombre |
Advanced Mining Technology Center - Chile
Universidad de Chile - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 6 | GARCIA-GARCIA, ALEJANDRA | Mujer |
Centro de Investigación en Materiales Avanzados S.C. Parque PIIT - México
Advanced Mining Technology Center - Chile Ctr Invest Mat Avanzados SC Parque PIIT - México Universidad de Chile - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 6 | García, Alejandra García | - |
Centro de Investigación en Materiales Avanzados S.C. Parque PIIT - México
Ctr Invest Mat Avanzados SC Parque PIIT - México |
| 7 | GARCIA-GARCIA, ALEJANDRA | Mujer |
Centro de Investigación en Materiales Avanzados S.C. Parque PIIT - México
Advanced Mining Technology Center - Chile Ctr Invest Mat Avanzados SC Parque PIIT - México Universidad de Chile - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| CONICYT-PIA |
| CIMAV |
| National Commission for Science and Technology |
| CONICYT-PIA Project |
| AMTC |
| FONDECYT Postdoctoral program |
| Department of Civil Engineering of Universidad de Chile |
| ANID |
| Agencia Nacional de Investigación y Desarrollo |
| Instituto Tecnologico de Sonora through a PROFAPI fund |
| Instituto Tecnológico de Sonora |
| Associative Research Program of the National Commission of Science and Technology (CONICYT, PIA Project) |
| Centro Avanzado de Tecnología para la Minería |
| Agradecimiento |
|---|
| Funding: This research was funded by the Associative Research Program of the National Commission of Science and Technology (CONICYT, PIA Project ACM170003), ANID, Fondecyt Postdoctoral program (Project 3180093), AMTC, CONICYT-PIA Project AFB180004, and the Instituto Tecnológico de Sonora through a PROFAPI fund (Project 2020–0021). |
| Acknowledgments: The authors thank the Associative Research Program of the National Commission of Science and Technology (CONICYT, PIA Project ACM170003). Bárbara Rodríguez thanks support from the Chilean Government (ANID) through the Fondecyt Postdoctoral program (Project 3180093). Moreover, we thank Solvay Advanced Polymers for donating the polysulfone Udel P-1700. The authors also thank the Water Quality Laboratory of the Department of Civil Engineering of Universidad de Chile for giving the infrastructure. The author M.M. Armendariz-Ontiveros would like to acknowledge funding provided by the Instituto Tecnológico de Sonora through a PROFAPI fund (Project 2020–0021). The authors thank to Jesus Alejandro Arizpe Zapata, Luis Gerardo Silva Vidaurri, Alonso Concha Balderrama, Lilia Magdalena Bautista Carrillo, Nayely Pineda Aguilar, and Oscar E. Vega Becerra for technical support at CIMAV. |
| This research was funded by the Associative Research Program of the National Commission of Science and Technology (CONICYT, PIA Project ACM170003), ANID, Fondecyt Postdoctoral program (Project 3180093), AMTC, CONICYT-PIA Project AFB180004, and the Instituto Tecnologico de Sonora through a PROFAPI fund (Project 2020-0021). |