Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Characteristics of Atmospheric Wave-Induced Laminae Observed by Ozonesondes at the Southern Tip of South America
Indexado
WoS WOS:000452001400002
Scopus SCOPUS_ID:85056118967
DOI 10.1029/2018JD028707
Año 2018
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Fluctuations of ozone concentrations with dimensions of a few kilometers (i.e., ozone laminae) are frequently found in ozone-sounding profiles. We used ozonesonde measurements made at the southern tip of South America to examine the relationship between ozone laminae and atmospheric waves near the edge of the polar vortex and on the leeward side of the Andes Mountains. Laminar structures are formed by vertical and horizontal displacements of isopleths due to gravity waves and by isentropic advection of vortex air filaments with low ozone concentration due to Rossby wave breaking. We extracted components of these ozone fluctuations by applying a high-pass filter to the observed ozone profiles and normalizing them to background concentrations, which were extracted with a low-pass filter. Ozone fluctuations due to displacements caused by gravity waves were individually evaluated with experimental data. We assumed that the residuals between the observed and gravity wave-induced fluctuations were Rossby waves-induced fluctuations. We found that the gravity wave-induced variability was larger in the upper troposphere than in the lower stratosphere and was a maximum in winter. Rossby wave-induced variability showed a distinct seasonal pattern in the lower stratosphere and accounted for a large portion of the observed variability. We also examined the relationship between gravity wave-induced and Rossby wave-induced ozone variability and the differences in equivalent latitudes between the sonde positions and the polar vortex edge. We found that variability was larger inside than outside the polar vortex.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Meteorology & Atmospheric Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ohyama, H. - Nagoya Univ - Japón
Natl Inst Environm Studies - Japón
Nagoya University - Japón
National Institute for Environmental Studies of Japan - Japón
2 Mizuno, A. Hombre Nagoya Univ - Japón
Nagoya University - Japón
3 ZAMORANO-BANDA, FELIX Hombre Universidad de Magallanes - Chile
4 Sugita, T. - Natl Inst Environm Studies - Japón
National Institute for Environmental Studies of Japan - Japón
5 Akiyoshi, H. - Natl Inst Environm Studies - Japón
National Institute for Environmental Studies of Japan - Japón
6 Noguchi, K. - Nara Womens Univ - Japón
Nara Women's University - Japón
7 Wolfram, Elian Hombre CEILAP UNIDEF MINDEF CONICET - Argentina
UNIV TECNOL NACL - Argentina
CEILAP-UNIDEF (MINDEF-CONICET) - Argentina
Universidad Tecnológica Nacional - Argentina
8 Salvador, Jacobo Hombre CEILAP UNIDEF MINDEF CONICET - Argentina
UNIV TECNOL NACL - Argentina
Univ Nacl Patagonia Austral - Argentina
CIT Santa Cruz - Argentina
CEILAP-UNIDEF (MINDEF-CONICET) - Argentina
Universidad Tecnológica Nacional - Argentina
National University of Patagonia Austral - Argentina
9 Benitez, G. C. - Natl Meteorol Serv - Argentina
National Meteorological Service - Argentina

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Nacional de la Patagonia Austral
Universidad Tecnológica Nacional
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Japan International Cooperation Agency (JICA)
Nagoya University
Science and Technology Research Partnership for Sustainable Development
Science and Technology Research Partnership for Sustainable Development (SATREPS) of the Japan Science and Technology Agency (JST)
Japan International Cooperation Agency
Faculty of Science, Cairo University
National Institute for Environmental Studies
7Facultad Regional Buenos Aires
UTN-FRBA
CEILAP-UNIDEF
MINDEF-CONICET
Laser and Applications Research Center
Center for Innovative Technology
NASA Goddard Earth Sciences Data Information Services Center
Meteorological Service of Argentina

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Part of this research was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) of the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). We are grateful to R. Perez, I. Villa, and C. Cassiccia, who launched the ozonesondes at Punta Arenas. The Ushuaia ozonesonde data were acquired from the World Ozone and Ultraviolet Radiation Data Centre data archive (https://woudc.org/data/explore.php).MERRA-2 data were obtained from the NASA Goddard Earth Sciences Data Information Services Center (https://disc.sci.gsfc.nasa.gov).We thank the Meteorological Service of Argentina, which is responsible for operating the ozonesonde observations at Ushuaia. We are grateful to M. Takahashi for his useful comments and discussions.
Part of this research was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) of the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). We are grateful to R. P?rez, I. Villa, and C. Cassiccia, who launched the ozonesondes at Punta Arenas. The Ushuaia ozonesonde data were acquired from the World Ozone and Ultraviolet Radiation Data Centre data archive (https://woudc.org/data/explore.php). MERRA-2 data were obtained from the NASA Goddard Earth Sciences Data Information Services Center (https://disc.sci.gsfc.nasa.gov). We thank the Meteorological Service of Argentina, which is responsible for operating the ozonesonde observations at Ushuaia. We are grateful to M. Takahashi for his useful comments and discussions.

Muestra la fuente de financiamiento declarada en la publicación.