Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Hindcasting and Forecasting Total Suspended Sediment Concentrations Using a NARX Neural Network
Indexado
WoS WOS:000606455800001
Scopus SCOPUS_ID:85099034836
DOI 10.3390/SU13010363
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Estimating and forecasting suspended sediments concentrations in streams constitutes a valuable asset for sustainable land management. This research presents the development of a non-linear autoregressive exogenous neural network (NARX) for forecasting sediment concentrations at the exit of Francia Creek watershed (Valparaiso, Chile). Details are presented on input data selection, data splitting, selection of model architecture, determination of model structure, NARX training (optimization of model parameters), and model validation (hindcasting and forecasting). The study explored if the developed artificial neural network model is valid for forecasting daily suspended sediment concentrations for a complete year, capturing seasonal trends, and maximum and baseflow concentrations. Francia Creek watershed covers approximately 3.24 km(2). Land cover within the catchment consists mainly of native and exotic vegetation, eroded soil, and urban areas. Input data consisting of precipitation and stream flow time-series were fed to a NARX network for forecasting daily suspended sediments (SST) concentrations for years 2013-2014, and hindcasting for years 2008-2010. Training of the network was performed with daily SST, precipitation, and flow data from years 2012 and 2013. The resulting NARX net consisted of an open-loop, 12-node hidden layer, 100 iterations, using Bayesian regularization backpropagation. Hindcasting of daily and monthly SST concentrations for years 2008 through 2010 was successful. Daily SST concentrations for years 2013 and 2014 were forecasted successfully for baseflow conditions (R-2 = 0.73, NS = 0.71, and Kling-Gupta efficiency index (K-G) = 0.84). Forecasting daily SST concentrations for year 2014 was within acceptable statistical fit and error margins (R-2 = 0.53, NS = 0.47, K-G = 0.60, d = 0.82). Forecasting of monthly maximum SST concentrations for the two-year period (2013 and 2014) was also successful (R-2 = 0.69, NS = 0.60, K-G = 0.54, d = 0.84).

Revista



Revista ISSN
Sustainability 2071-1050

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Environmental Studies
Green & Sustainable Science & Technology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ALARCON-CALDERON, VLADIMIR JOSE Hombre Universidad Diego Portales - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.