Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



The breakdown of Moore's law induced by weak Anderson localization and by size effects in nano-scale metallic connectors
Indexado
WoS WOS:000612921400001
Scopus SCOPUS_ID:85100778461
DOI 10.1088/2053-1591/ABD422
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We report the resistivity measured at temperatures between 5 K and 300 K of a Cu film 63 nm thick with grains that have a diameter d = 10.5 nm on the average. The resistivity of this film is described by the first quantum theory of resistivity of nano-scale metallic connectors [R C Munoz et al, App. Phys. Rev. 4 (2017) 011102]. We also report an improved version of this theory that includes a new analytical description of the effect of grain boundary disorder on electron transport. We employ the surface roughness and grain size distribution measured on this Cu film as input data to compute, using our heory, the room temperature resistivity of Cu wires of rectangular cross section, and compare with the resistivity of these wires reported in the literature [M H Van der Veen et al, 2018 IEEE International Interconnect Technology Conference (IITC) (2018)], that are used for designing Integrated Circuits (IC) for the 14 nm, 10 nm, 7 nm, 5 nm, 3 nm and 2 nm nodes, respectively. The quantum theory predicts an increase in resistivity with diminishing wire dimensions that accurately agrees with the room temperature resistivity measured on these Cu wires. The resistivity induced by electron-rough surface scattering accounts for about half of the increase over the bulk observed in the 3 nm and 2 nm tech node; scattering by non-uniform grain boundaries contributes the remaining increase in resistivity-the latter is responsible for the weak Anderson localization. According to the description of electron motion furnished by this improved quantum theory, the break down of Moore's law with shrinking wire dimensions is to be expected, since it originates from size effects triggered by electron scattering with rough surfaces and scattering by non-equally spaced grain boundaries, which become dominant as the dimensions of the metallic wire shrinks.

Revista



Revista ISSN
Materials Research Express 2053-1591

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Arenas, Claudio Hombre Pontificia Universidad Católica de Chile - Chile
2 Herrera, G. Hombre Universidad de Chile - Chile
3 MUNOZ-ORTIZ, ENRIQUE Hombre Pontificia Universidad Católica de Chile - Chile
4 MUNOZ-ALVARADO, RAUL CARLOS Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondecyt Project
ANID PIA/Anillo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
E. Munoz acknowledges Fondecyt Project 1190361 and ANID PIA/Anillo ACT192023 for financial support. The help of Simon Oyarzun on the transport measurements is gratefully acknowledged.
E. Muñoz acknowledges Fondecyt Project 1190361 and ANID PIA/Anillo ACT192023 for financial support. The help of Simon Oyarzun on the transport measurements is gratefully acknowledged.

Muestra la fuente de financiamiento declarada en la publicación.