Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/LAGIRS48042.2020.9165653 | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Surface waters are a fundamental resource. They fulfil key function in global biogeochemical cycles and are core to our water, food and energy security. The rapidly increasing rate of data collection from different Earth observation (EO) missions suitable for observing water bodies has promoted satellite remote sensing (RS) as a more widely recognised source of information on a number of indicators of water quality and ecosystem condition at local and global scales. In parallel, advances in optical sensors support new and more detailed characterisation of the Earth surface and could lead to innovative EO-based products. Nonetheless, RS of water colour of inland and coastal systems, especially in larger scales and over long-term time series, faces unique challenges. This study provides an overview of the challenges and solutions of developing a global observation platform, including the diverse and complex optical properties of inland waters and guided algorithm selection procedure required to deliver reliable data. The development and validation of a global satellite data processing chain (Calimnos) has been supported by access to an extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned database. This approach has resulted in a step-change in our ability to produce regional and global water quality products for optically complex waters. Local examples of the data outputs will be explored and the opportunities in how these data can be embedded within local and national monitoring schemes to facilitate better management of water will be discussed.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Spyrakos, E. | - |
University of Stirling - Reino Unido
|
| 2 | Hunter, P. | - |
University of Stirling - Reino Unido
|
| 3 | Simis, S. | - |
Plymouth Marine Laboratory - Reino Unido
|
| 4 | Neil, C. | - |
University of Stirling - Reino Unido
|
| 5 | Riddick, C. | - |
University of Stirling - Reino Unido
|
| 6 | Wang, S. | - |
University of Stirling - Reino Unido
|
| 7 | Varley, A. | - |
University of Stirling - Reino Unido
|
| 8 | Blake, M. | - |
University of Stirling - Reino Unido
|
| 9 | Groom, S. | - |
Plymouth Marine Laboratory - Reino Unido
|
| 10 | Palenzuela, J. Torres | - |
Universidade de Vigo - España
|
| 11 | Gonzalez, L. Vilas | - |
Universidade de Vigo - España
|
| 12 | CARDENAS-MANSILLA, CARLOS ALBERTO | Hombre |
Universidad de Magallanes - Chile
|
| 13 | Frangopulos, Máximo | - |
Universidad de Magallanes - Chile
|
| 14 | Vega, X. Aguilar | - |
Universidad de Magallanes - Chile
|
| 15 | Iriarte, J. L. | - |
Universidad Austral de Chile - Chile
|
| 16 | Tyler, A. | - |
University of Stirling - Reino Unido
|
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| National Eye Research Centre |
| Horizon 2020 |
| Natural Environment Research Council |
| Horizon 2020 Framework Programme |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Agradecimiento |
|---|
| We would like to thank the European Union’s Horizon 2020 research and innovation programme (CoastObs, grant agreement n° 776348, EOMORES, grant agreemnt no. 730066 and CERTO staring in January 2020), UK NERC funded GloboLakes project (REF NE/J024279/1) and Conicyt projects MEC80180058 and AUB 1900003. |