Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Knowledge Graphs: Research Directions
Indexado
Scopus SCOPUS_ID:85096588649
DOI 10.1007/978-3-030-60067-9_8
Año 2020
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In these lecture notes, we provide an overview of some of the high-level research directions and open questions relating to knowledge graphs. We discuss six high-level concepts relating to knowledge graphs: data models, queries, ontologies, rules, embeddings and graph neural networks. While traditionally these concepts have been explored by different communities in the context of graphs, more recent works have begun to look at how they relate to one another, and how they can be unified. In fact, at a more foundational level, we can find some surprising relations between the different concepts. The research questions we explore mostly involve combinations of these concepts.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Hogan, Aidan Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
IMFD

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Acknowledgements. This work was supported by Fondecyt Grant No. 1181896 and by the Millennium Institute for Foundational Research on Data (IMFD). I would like to thank my co-authors on the extended tutorial for the various discussions and contributions that helped to inform these lecture notes. I also wish to thank the anonymous reviewers’ for their helpful comments.

Muestra la fuente de financiamiento declarada en la publicación.