Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



An Apriori-Based Learning Scheme towards Intelligent Mining of Association Rules for Geological Big Data
Indexado
WoS WOS:000618592700010
Scopus SCOPUS_ID:85097974098
DOI 10.32604/IASC.2020.010129
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The past decade has witnessed the rapid advancements of geological data analysis techniques, which facilitates the development of modern agricultural systems. However, there remains some technical challenges that should be addressed to fully exploit the potential of those geological big data, while gathering massive amounts of data in this application field. Generally, a good representation of correlation in the geological big data is critical to making full use of multi-source geological data, while discovering the relationship in data and mining mineral prediction information. Then, in this article, a scheme is proposed towards intelligent mining of association rules for geological big data. Firstly, we achieve word embedding via word2vec technique in geological data. Secondly, through the use of self-organizing map (SOM) and K-means algorithm, the word embedding data is clustered to serve the purpose of improving the performance of analysis and mining. On the basis of it, the unsupervised Apriori learning algorithm is developed to analyze and mine these association rules in data. Finally, some experiments are conducted to verify that our scheme can effectively mine the potential relationships and rules in the mineral deposit data.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Automation & Control Systems
Scopus
Artificial Intelligence
Software
Theoretical Computer Science
Computational Theory And Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Chen, Maojian - University of Science and Technology Beijing - China
Beijing Key Laboratory of Knowledge Engineering for Materials Science - China
Beijing Intelligent Logistics System Collaborative Innovation Center - China
Univ Sci & Technol Beijing - China
Beijing Key Lab Knowledge Engn Mat Sci - China
Beijing Intelligent Logist Syst Collaborat Innova - China
2 Luo, Xiong - University of Science and Technology Beijing - China
Beijing Key Laboratory of Knowledge Engineering for Materials Science - China
Beijing Intelligent Logistics System Collaborative Innovation Center - China
Univ Sci & Technol Beijing - China
Beijing Key Lab Knowledge Engn Mat Sci - China
Beijing Intelligent Logist Syst Collaborat Innova - China
3 Zhu, Yueqin - China Geological Survey - China
China Geol Survey - China
4 Li, Yan - University of Science and Technology Beijing - China
Beijing Key Laboratory of Knowledge Engineering for Materials Science - China
Beijing Intelligent Logistics System Collaborative Innovation Center - China
Univ Sci & Technol Beijing - China
Beijing Key Lab Knowledge Engn Mat Sci - China
Beijing Intelligent Logist Syst Collaborat Innova - China
5 Zhao, Wenbing - Cleveland State University - Estados Unidos
Cleveland State Univ - Estados Unidos
6 Wu, Jinsong - Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
National Key Research and Development Program of China
Beijing Natural Science Foundation
Natural Science Foundation of Beijing Municipality
Scientific and Technological Innovation Foundation of Shunde Graduate School
Fundamental Research Funds for the University of Science and Technology Beijing
Beijing Intelligent Logistics System Collaborative Innovation Center
University of Science and Technology Beijing
Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Grant BILSCIC-2019KF-08, in part by the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, under Grant BK19BF006, and in part by the Fundamental Research Funds for the University of Science and Technology Beijing under Grant FRF-BD-19-012A.
Grant BILSCIC-2019KF-08, in part by the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, under Grant BK19BF006, and in part by the Fundamental Research Funds for the University of Science and Technology Beijing under Grant FRF-BD-19-012A.
This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFC0600510, in part by the National Natural Science Foundation of China under Grant U1836106 and Grant 41872253, in part by the Beijing Natural Science Foundation under Grant 19L2029, in part by the Beijing Intelligent Logistics System Collaborative Innovation Center under Grant BILSCIC-2019KF-08, in part by the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB, under Grant BK19BF006, and in part by the Fundamental Research Funds for the University of Science and Technology Beijing under Grant FRF-BD-19-012A.

Muestra la fuente de financiamiento declarada en la publicación.