Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2018027 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We introduce and analyse an augmented mixed variational formulation for the coupling of the Stokes and heat equations. More precisely, the underlying model consists of the Stokes equation suggested by the Oldroyd model for viscoelastic flow, coupled with the heat equation through a temperature-dependent viscosity of the fluid and a convective term. The original unknowns are the polymeric part of the extra-stress tensor, the velocity, the pressure, and the temperature of the fluid. In turn, for convenience of the analysis, the strain tensor, the vorticity, and an auxiliary symmetric tensor are introduced as further unknowns. This allows to join the polymeric and solvent viscosities in an adimensional viscosity, and to eliminate the polymeric part of the extra-stress tensor and the pressure from the system, which, together with the solvent part of the extra-stress tensor, are easily recovered later on through suitable postprocessing formulae. In this way, a fully mixed approach is applied, in which the heat flux vector is incorporated as an additional unknown as well. Furthermore, since the convective term in the heat equation forces both the velocity and the temperature to live in a smaller space than usual, we augment the variational formulation by using the constitutive and equilibrium equations, the relation defining the strain and vorticity tensors, and the Dirichlet boundary condition on the temperature. The resulting augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Schauder and Banach theorems, combined with the Lax-Milgram theorem and certain regularity assumptions, are applied to prove the unique solvability of the continuous system. As for the associated Galerkin scheme, whose solvability is established similarly to the continuous case by using the Brouwer fixed-point and Lax{Milgram theorems, we employ Raviart{Thomas approximations of order k for the stress tensor and the heat flux vector, continuous piecewise polynomials of order <= k + 1 for velocity and temperature, and piecewise polynomials of order <= k for the strain tensor and the vorticity. Finally, we derive optimal a priori error estimates and provide several numerical results illustrating the good performance of the scheme and confirming the theoretical rates of convergence.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Universidad de Concepción - Chile
|
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad de Concepción - Chile
Universidad del Bío Bío - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| FONDECYT |
| CONICYT-Chile |
| Universidad del Bío-Bío |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Universidad de Concepción |
| CONICYT-Chile of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigación en Computación |
| Universidad del Bio-Bio through DIUBB Project |
| Universidad del BÃo-BÃo |
| Becas-Chile Programme for Chilean students |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through the project AFB17001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, project Fondecyt 1161325, and the Becas-Chile Programme for Chilean students; by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion; and by Universidad del Bio-Bio through DIUBB project GI 171508/VC. |
| IThis work was partially supported by CONICYT-Chile through the project AFB17001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, project Fondecyt 1161325, and the Becas-Chile Programme for Chilean students; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Universidad del Bío-Bío through DIUBB project GI 171508/VC. |