Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Novel Tunable Spatio-Temporal Patterns From a Simple Genetic Oscillator Circuit
Indexado
WoS WOS:000570427300001
Scopus SCOPUS_ID:85091011982
DOI 10.3389/FBIOE.2020.00893
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Multicellularity, the coordinated collective behavior of cell populations, gives rise to the emergence of self-organized phenomena at many different spatio-temporal scales. At the genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including during their development and regeneration. Synthetic biologists have successfully created simple synthetic genetic circuits that produce oscillations in single cells. Studying and engineering synthetic oscillators in a multicellular chassis can therefore give us valuable insights into how simple genetic circuits can encode complex multicellular behaviors at different scales. Here we develop a study of the coupling between the repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies. We showin silicohow mechanical constraints generate characteristic patterns of growth rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional model which predicts that coupling the repressilator to this pattern of growth rate via protein dilution generates traveling waves of gene expression. We show that the dynamics of these spatio-temporal patterns are determined by two parameters; the protein degradation and maximum expression rates of the repressors. We derive simple relations between these parameters and the key characteristics of the traveling wave patterns: firstly, wave speed is determined by protein degradation and secondly, wavelength is determined by maximum gene expression rate. Our analytical predictions and numerical results were in close quantitative agreement with detailed individual based simulations of growing cell colonies. Confirming published experimental results we also found that static ring patterns occur when protein stability is high. Our results show that this pattern can be induced simply by growth rate dilution and does not require transition to stationary phase as previously suggested. Our method generalizes easily to other genetic circuit architectures thus providing a framework for multi-scale rational design of spatio-temporal patterns from genetic circuits. We use this method to generate testable predictions for the synthetic biology design-build-test-learn cycle.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biotechnology & Applied Microbiology
Multidisciplinary Sciences
Engineering, Biomedical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Yanez Feliu, Guillermo Hombre Pontificia Universidad Católica de Chile - Chile
2 Vidal, Gonzalo Hombre Pontificia Universidad Católica de Chile - Chile
3 Munoz Silva, Macarena Mujer Pontificia Universidad Católica de Chile - Chile
4 Rudge, Timothy J. Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Pontificia Universidad Católica de Chile
Institute for Biological and Medical Engineering
ANID
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development
Beca Ayudante Doctorando scholarship from the Department of Chemical and Bioprocess Engineering, Pontificia Universidad Catolica de Chile
Institute for Biological and Medical Engineering, Pontificia Universidad Catolica de Chile
Agenția Națională pentru Cercetare și Dezvoltare

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
GV was supported by a scholarship from the Institute for Biological and Medical Engineering, Pontificia Universidad Catolica de Chile. GY was supported by Beca Ayudante Doctorando scholarship from the Department of Chemical and Bioprocess Engineering, Pontificia Universidad Catolica de Chile. TR, GV, GY, and MM acknowledge financial support from the National Agency for Research and Development (ANID)/PIA/ACT192015.
We thank Gustavo Düring, Luca Ciandrini, Pascal Rogalla, and Ignacio Medina for helpful and stimulating discussions. We also thank the members of the Synthetic Biology Lab for their support and encouragement—Anibal Arce, Kevin Simpson, Tamara Matute, Isaac Nuñez, Fernán Federici, among others. A preprint of this work is available on bioRxiv (Yáñez Feliu et al., 2020). Funding. GV was supported by a scholarship from the Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile. GY was supported by Beca Ayudante Doctorando scholarship from the Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile. TR, GV, GY, and MM acknowledge financial support from the National Agency for Research and Development (ANID)/PIA/ACT192015.

Muestra la fuente de financiamiento declarada en la publicación.