Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3233/ASY-191591 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the Landau Hamiltonian H-0, self-adjoint in L-2 (R-2), whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues Lambda(q), q is an element of Z(+). We perturb H-0 by a non-local potential written as a bounded pseudo-differential operator Op(w)(V) with real-valued Weyl symbol V, such that Op(w)(V)H-0(-1) is compact. We study the spectral properties of the perturbed operator H-V = H-0 Op(w)(V). First, we construct symbols V, possessing a suitable symmetry, such that the operator H-V admits an explicit eigenbasis in L-2 (R-2), and calculate the corresponding eigenvalues. Moreover, for V which are not supposed to have this symmetry, we study the asymptotic distribution of the eigenvalues of H-V adjoining any given Lambda(q). We find that the effective Hamiltonian in this context is the Toeplitz operator T-q(V) = p(q)Op(w)(V)p(q), where p(q) is the orthogonal projection onto Ker(H-0 - Lambda I-q), and investigate its spectral asymptotics.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cardenas, Esteban | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Raikov, Georgi | Hombre |
Pontificia Universidad Católica de Chile - Chile
Bulgarian Acad Sci - Bulgaria Institute of Mathematics and Informatics Bulgarian Academy of Sciences - Bulgaria Facultad de Matemáticas - Chile |
| 3 | Tejeda, Ignacio | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Agradecimiento |
|---|
| The authors are very grateful to Thomas Ransford who gave in [40] the idea of the proof of Proposition 5.6. Moreover, they thank Luchezar Stoyanov for a useful discussion of the details of this proof, as well as Dimiter Balabanski and Hajo Leschke for valuable comments on the applications of non-local potentials in nuclear physics. The partial support of the Chilean Science Foundation Fondecyt under Grant 1170816 is gratefully acknowledged. |
| The authors are very grateful to Thomas Ransford who gave in [40] the idea of the proof of Proposition 5.6. Moreover, they thank Luchezar Stoyanov for a useful discussion of the details of this proof, as well as Dimiter Balabanski and Hajo Leschke for valuable comments on the applications of non-local potentials in nuclear physics. The partial support of the Chilean Science Foundation Fondecyt under Grant 1170816 is gratefully acknowledged. |