Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/202039141 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The existence of a radius valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between those of Earth and Neptune. In this work we provide insights into the existence of the radius valley, first from a pure formation point of view and then from a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift, and fragmentation, and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We include gas accretion, type I-II migration, and photoevaporation driven mass-loss after formation. We perform an extensive parameter study evaluating a wide range of disc properties and initial locations of the embryo. We find that due to the change in dust properties at the water ice line, rocky cores form typically with similar to 3 M-circle plus and have a maximum mass of similar to 5 M-circle plus, while icy cores peak at similar to 10 M-circle plus, with masses lower than 5 M-circle plus being scarce. When neglecting the gaseous envelope, the formed rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes yields planets more massive than similar to 10 M-circle plus with radii above 4 R-circle plus. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, as shown extensively in the past, the second peak can host half-rock-half-water planets with thin or non-existent H-He atmospheres, as suggested by a few previous studies. Some additional mechanisms inhibiting gas accretion or promoting envelope mass-loss should operate at short orbital periods to explain the presence of similar to 10-40 M-circle plus planets falling in the second peak of the size distribution.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Venturini, J. | Mujer |
Int Space Sci Inst - Suiza
International Space Science Institute - Suiza |
| 2 | Guilera, Octavio Miguel | Hombre |
CCT La Plata CONICET UNLP - Argentina
Pontificia Universidad Católica de Chile - Chile Núcleo Milenio de Formación Planetaria - Chile Instituto de Astrofísica de La Plata (CONICET- Universidad Nacional de La Plata) - Argentina Instituto de Astrofisica de La Plata - Argentina |
| 3 | Haldemann, Jonas | Hombre |
Pontificia Universidad Católica de Chile - Chile
University of Bern - Suiza |
| 4 | Ronco, María Paula | Mujer |
Pontificia Universidad Católica de Chile - Chile
Núcleo Milenio de Formación Planetaria - Chile |
| 5 | Mordasini, C. | Hombre |
Univ Bern - Suiza
University of Bern - Suiza |
| Fuente |
|---|
| FONDECYT |
| Agencia Nacional de Promoción Científica y Tecnológica |
| Iniciativa Científica Milenio |
| Swiss National Science Foundation |
| Swiss National Science Foundation (SNSF) |
| ANPCyT, Argentina |
| Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung |
| FONDE-CYT |
| Iniciativa Cientifica Milenio (ICM) via the Nucleo Milenio de Formacion Planetaria Grant |
| nccr – on the move |
| Agradecimiento |
|---|
| We thank the anonymous referee for valuable criticism. J. V. and O. M. G. thank the ISSI Team "Ice giants: formation, evolution and link to exoplanets" for fruitful discussions. O. M. G. thanks ISSI Bern for their support and hospitality during a monthly stay. J. H. acknowledges the Swiss National Science Foundation (SNSF) for supporting research through the SNSF grant 200020_19203. This work has been carried out in part within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation. O. M. G. is partially support by PICT 2018-0934 and PICT 2016-0053 from ANPCyT, Argentina. O. M. G. and M. P. R. acknowledge financial support from the Iniciativa Cientifica Milenio (ICM) via the Nucleo Milenio de Formacion Planetaria Grant. M. P. R. acknowledges financial support provided by FONDECYT Grant 3190336. |
| Acknowledgements. We thank the anonymous referee for valuable criticism. J. V. and O. M. G. thank the ISSI Team “Ice giants: formation, evolution and link to exoplanets” for fruitful discussions. O. M. G. thanks ISSI Bern for their support and hospitality during a monthly stay. J. H. acknowledges the Swiss National Science Foundation (SNSF) for supporting research through the SNSF grant 200020_19203. This work has been carried out in part within the frame-work of the NCCR PlanetS supported by the Swiss National Science Foundation. O. M. G. is partially support by PICT 2018-0934 and PICT 2016-0053 from ANPCyT, Argentina. O. M. G. and M. P. R. acknowledge financial support from the Iniciativa Científica Milenio (ICM) via the Núcleo Milenio de Formación Planetaria Grant. M. P. R. acknowledges financial support provided by FONDE-CYT Grant 3190336. |