Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bots in Social and Interaction Networks: Detection and Impact Estimation
Indexado
WoS WOS:000595552700005
Scopus SCOPUS_ID:85097346225
DOI 10.1145/3419369
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The rise of bots and their influence on social networks is a hot topic that has aroused the interest of many researchers. Despite the efforts to detect social bots, it is still difficult to distinguish them from legitimate users. Here, we propose a simple yet effective semi-supervised method that allows distinguishing between bots and legitimate users with high accuracy. The method learns a joint representation of social connections and interactions between users by leveraging graph-based representation learning. Then, on the proximity graph derived from user embeddings, a sample of bots is used as seeds for a label propagation algorithm. We demonstrate that when the label propagation is done according to pairwise account proximity, our method achieves F1 = 0.93, whereas other state-of-the-art techniques achieve F1 <= 0.87. By applying our method to a large dataset of retweets, we uncover the presence of different clusters of bots in the network of Twitter interactions. Interestingly, such clusters feature different degrees of integration with legitimate users. By analyzing the interactions produced by the different clusters of bots, our results suggest that a significant group of users was systematically exposed to content produced by bots and to interactions with bots, indicating the presence of a selective exposure phenomenon.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Scopus
Information Systems
Business, Management And Accounting (All)
Computer Science Applications
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MENDOZA-ROCHA, MARCELO GABRIEL Hombre Universidad Técnica Federico Santa María - Chile
Universidad Técnica - Chile
2 Tesconi, Maurizio Hombre IIT CNR - Italia
Natl Res Council IIT CNR - Italia
Universidad Técnica - Chile
Universidad Técnica Federico Santa María - Chile
3 Cresci, Stefano Hombre IIT CNR - Italia
Natl Res Council IIT CNR - Italia
Universidad Técnica - Chile
Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 4.17 %
Citas No-identificadas: 95.83 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 4.17 %
Citas No-identificadas: 95.83 %

Financiamiento



Fuente
EU
Millennium Institute for Foundational Research on Data
ANID Fondecyt
EU H2020 Program
ANID FONDECYT grant
European Integrated Infrastructure for Social Mining and Big Data Analytics

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research is supported in part by the EU H2020 Program under the scheme INFRAIA-01-2018-2019: Research and Innovation action 001 under Grant agreement 871042378 001 SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics. Dr. Mendoza acknowledge funding support from the Millennium Institute for Foundational Research on Data, ANID PIA/APOYO AFB180002 and from ANID FONDECYT grant 1200211.
This research is supported in part by the EU H2020 Program under the scheme INFRAIA-01-2018-2019: Research and Innovation action 001 under Grant agreement 871042378 001 SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics. Dr. Mendoza acknowledge funding support from the Millennium Institute for Foundational Research on Data, ANID PIA/APOYO AFB180002 and from ANID FONDECYT grant 1200211. Authors’ addresses: M. Mendoza, Department of Informatics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile; email: marcelo.mendoza@usm.cl; M. Tesconi and S. Cresci (corresponding author), Institute of Informatics and Telematics, National Research Council (IIT-CNR), via G. Moruzzi 1, 56124 Pisa, Italy; emails: {maurizio. tesconi, stefano.cresci}@iit.cnr.it. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. © 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1046-8188/2020/10-ART5 $15.00 https://doi.org/10.1145/3419369

Muestra la fuente de financiamiento declarada en la publicación.