Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Degree-Constrained <i>k</i>-Minimum Spanning Tree Problem
Indexado
WoS WOS:000595644000009
Scopus SCOPUS_ID:85096544069
DOI 10.1155/2020/7628105
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Let G(V,E) be a simple undirected complete graph with vertex and edge sets V and E, respectively. In this paper, we consider the degree-constrained k-minimum spanning tree (DCkMST) problem which consists of finding a minimum cost subtree of G formed with at least k vertices of V where the degree of each vertex is less than or equal to an integer value d <= k-2. In particular, in this paper, we consider degree values of d is an element of[2,3]. Notice that DCkMST generalizes both the classical degree-constrained and k-minimum spanning tree problems simultaneously. In particular, when d=2, it reduces to a k-Hamiltonian path problem. Application domains where DCkMST can be adapted or directly utilized include backbone network structures in telecommunications, facility location, and transportation networks, to name a few. It is easy to see from the literature that the DCkMST problem has not been studied in depth so far. Thus, our main contributions in this paper can be highlighted as follows. We propose three mixed-integer linear programming (MILP) models for the DCkMST problem and derive for each one an equivalent counterpart by using the handshaking lemma. Then, we further propose ant colony optimization (ACO) and variable neighborhood search (VNS) algorithms. Each proposed ACO and VNS method is also compared with another variant of it which is obtained while embedding a Q-learning strategy. We also propose a pure Q-learning algorithm that is competitive with the ACO ones. Finally, we conduct substantial numerical experiments using benchmark input graph instances from TSPLIB and randomly generated ones with uniform and Euclidean distance costs with up to 400 nodes. Our numerical results indicate that the proposed models and algorithms allow obtaining optimal and near-optimal solutions, respectively. Moreover, we report better solutions than CPLEX for the large-size instances. Ultimately, the empirical evidence shows that the proposed Q-learning strategies can bring considerable improvements.

Revista



Revista ISSN
Complexity 1076-2787

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Mathematics, Interdisciplinary Applications
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ADASME-SOTO, PABLO ALBERTO Hombre Universidad de Santiago de Chile - Chile
2 Dehghan Firoozabadi, Ali Hombre Universidad Tecnológica Metropolitana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the financial support from FONDECYT (nos. 11180107 and 3190147).
The authors acknowledge the financial support from FONDECYT (nos. 11180107 and 3190147).

Muestra la fuente de financiamiento declarada en la publicación.