Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting air quality using deep learning in Talca city, Chile
Indexado
Scopus SCOPUS_ID:85082384185
DOI 10.1049/CP.2019.0243
Año 2019
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Nowadays, during the colder season, a number of cities in central and southern Chile are affected by a problem of air pollution. This problem is associated to the topography of the central valley, high emissions of domestic wood-burning stoves, and other meteorological characteristics such as the lack of rain or when the prevailing winds are calmed. Although, numerous studies have been undertaken for predicting the air quality in Santiago city, other medium-sized cities have seldom been studied. The present work focuses on the problem of air quality in Talca city (35°26'S; 71°44'W), a medium sized city located in Central Chile. The objective of the study is to predict, with a day in advance, the particulate matter with a diameter less than or equal to 2.5 micrometers (PM2.5). For this purpose we have used a deep learning neural network. The algorithm learns from historical records of air quality pollution as well as meteorological information at three monitoring stations. Unlike state-of-the-art methods that require intensive computational power to simulate the weather conditions, our proposed solution uses only pollutants measures of the stations in the city. We use exactly 24 records for a particular day, one for each hour. Our study focuses on the autumn-winter season for 3 years, including data for 612 days, i.e., 151 days per year (from April 1st, until August 31st). Our results prove the high capacity of RNN as a predictor algorithm for environmental emergency episodes in the three monitoring stations of the city. As a result, the model is an alternative for local authorities because it would improve the current forecast system of the city.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Astudillo, César A. Hombre Universidad de Talca - Chile
2 González-Martínez, Luis Hombre Universidad de Talca - Chile
3 Zapata-González, Eduardo Hombre Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.