Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine Learning for Optimizing Technological Properties of Wood Composite Filament-Timberfill Fabricated by Fused Deposition Modeling
Indexado
WoS WOS:000832292000010
Scopus SCOPUS_ID:85082385601
DOI 10.1007/978-3-030-42520-3_10
Año 2020
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This work evaluates the applicability of machine learning (ML) tools in additive manufacturing (AM) processes. One of the most employed AM techniques is fused deposition modeling (FDM), where a part is created from a computer-aided design (CAD) model using layer-by-layer deposition of a feedstock plastic filament material extruded through a nozzle. Owing to the large number of parameters involved in the manufacturing process, it is necessary to identify printing parameters ranges to improve mechanical properties as yield and ultimate strength. In that sense, ML has proven to be a reliable tool in engineering and materials processing, where hybrid ML algorithms are the best alternative since one-part acts as a forecaster, and the other part acts as an optimizer. To evaluate the performance of wood composite filament fabricated by FDM a uniaxial tensile test was performed at room temperature. The experimental procedure was carried out with a design of experiments of four factors at three levels, where the statistical significance of layer thickness, fill density, printing speed and raster angle was obtained as well as their interactions. Furthermore, ML’s algorithm accuracy was explored, where a neuro-fuzzy system (ANFIS) was trained and tested with the experimental data. Through the development of the present work, it is concluded that layer thickness and raster angle play a significant role in FDM of a wood composite filament where fibers presence increases the layer thickness accelerating the FDM process.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barrionuevo, Germán Omar Hombre Pontificia Universidad Católica de Chile - Chile
2 RAMOS-GREZ, JORGE ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
Research Center for Nanotechnology and Advanced Materials (CIEN-UC) - Chile
Center for Nanotechnology and Advanced Materials CIEN-UC - Chile
3 Botto-Tobar, M -
4 Vizuete, MZ -
5 Torres-Carrion, P -
6 Leon, SM -
7 Vasquez, GP -
8 Durakovic, B -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
Research Center for Nanotechnology and Advanced Materials (CIEN-UC)
CIEN-UC
State Secretariat for higher education, science, technology and innovation
State Secretariat for higher education, science, technology and innovation (SENESCYT)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Acknowledgements. This study has been completed under the financial support of the State Secretariat for higher education, science, technology and innovation (SENESCYT) grant number ARSEQ-BEC-000329-2017 and the Research Center for Nanotechnology and Advanced Materials (CIEN-UC).
This study has been completed under the financial support of the State Secretariat for higher education, science, technology and innovation (SENESCYT) grant number ARSEQ-BEC-000329-2017 and the Research Center for Nanotechnology and Advanced Materials (CIEN-UC).

Muestra la fuente de financiamiento declarada en la publicación.