Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Gold volatility prediction using a CNN-LSTM approach
Indexado
WoS WOS:000548587800010
Scopus SCOPUS_ID:85084471355
DOI 10.1016/J.ESWA.2020.113481
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Prediction of volatility for different types of financial assets is one of the tasks of greater mathematical complexity in time series prediction, mainly due to its noisy, non-stationary and heteroscedastic structure. On the other hand, gold is an asset of particular importance for hedging and diversification of investment portfolios, and therefore it is important to predict future volatility of this asset. This paper seeks to significantly improve the forecast of gold volatility by combining two deep learning methodologies: short-term memory networks (LSTM) added to convolutional neural networks (specifically a pre-trained VGG16 network). It is important to mention that these types of hybrid architectures have not been used in time series prediction, so it is a completely new approach to solving these types of problems. The CNN-LSTM hybrid model is capable of including images as input which provides a wide variety of information associated with both static and dynamic characteristics of the series. In parallel, different lags of profitability of the series are entered as input, which allows it to learn from the temporal structure. The results show a substantial improvement when this hybrid model is compared to the GARCH and LSTM models. A 37% reduction in MSE is observed compared to the classic GARCH model, and 18% compared to the LSTM model. Finally, the Model Confidence Model (MCS) determines a significant improvement in the prediction of the hybrid model. The fundamental importance of this research lies in the application of a new type of architecture capable of processing various sources of information for any time series prediction task.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vidal, Andrés Hombre Universidad Técnica Federico Santa María - Chile
2 KRISTJANPOLLER-RODRIGUEZ, WERNER DAVID Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.