Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/INGELECTRA50225.2020.246962 | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Deep learning models are traditionally used in big data scenarios. When there is not enough training data to fit a large model, transfer learning re-purpose the learned features from an existing model and re-train the lower layers for the new task. Bayesian inference techniques can be used to capture the uncertainty of the new model but it comes with a high computational cost. In this paper, the run time performance of an Stochastic Gradient Markov Chain Monte Carlo method using two different architectures is compared, namely GPU and multi-core CPU. As opposed to the widely usage of GPUs for deep learning, significant advantages from using modern CPU architectures.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | HERNANDEZ-ALVAREZ, SERGIO | Hombre |
Universidad Católica del Maule - Chile
|
| 2 | Valdes, Jose | Hombre |
Universidad Católica del Maule - Chile
|
| 3 | Valdenegro-Toro, Matias | Hombre |
German Research Center for Artificial Intelligence (DFKI) - Alemania
|