Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Counting Problems over Incomplete Databases
Indexado
WoS WOS:000627789800011
Scopus SCOPUS_ID:85086277822
DOI 10.1145/3375395.3387656
Año 2020
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We study the complexity of various fundamental counting problems that arise in the context of incomplete databases, i.e., relational databases that can contain unknown values in the form of labeled nulls. Specifically, we assume that the domains of these unknown values are finite and, for a Boolean query q, we consider the following two problems: given as input an incomplete database D, (a) return the number of completions of D that satisfy q; or (b) return or the number of valuations of the nulls of D yielding a completion that satisfies q. We obtain dichotomies between #P-hardness and polynomial-time computability for these problems when q is a self-join-free conjunctive query, and study the impact on the complexity of the following two restrictions: (1) every null occurs at most once in D (what is called Codd tables); and (2) the domain of each null is the same. Roughly speaking, we show that counting completions is much harder than counting valuations (for instance, while the latter is always in #P, we prove that the former is not in #P under some widely believed theoretical complexity assumption). Moreover, we find that both (1) and (2) reduce the complexity of our problems. We also study the approximability of these problems and show that, while counting valuations always has a fully polynomial randomized approximation scheme, in most cases counting completions does not. Finally, we consider more expressive query languages and situate our problems with respect to known complexity classes.

Revista



Revista ISSN
978-1-4503-7108-7

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ARENAS-SAAVEDRA, MARCELO ALEJANDRO Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
2 BARCELO-BAEZA, PABLO Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
3 Monet, Mikael Hombre Instituto Milenio Fundamentos de los Datos - Chile
4 Assoc Comp Machinery Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Millennium Institute for Foundational Research on Data (IMFD)
IMFD

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The third author would like to thank Antoine Amarilli for reminding him of the paper [14] in [34] and for suggesting to use #BIS in the proof of Proposition 3.11. This work was partly funded by the Millennium Institute for Foundational Research on Data (IMFD).
The third author would like to thank Antoine Amarilli for reminding him of the paper [14] in [34] and for suggesting to use #BIS in the proof of Proposition 3.11. This work was partly funded by the Millennium Institute for Foundational Research on Data (IMFD).

Muestra la fuente de financiamiento declarada en la publicación.