Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Detection of Anomalous Pollution Sensors Using Deep Learning Strategies
Indexado
Scopus SCOPUS_ID:85087339317
DOI 10.1088/1755-1315/503/1/012032
Año 2020
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, the pollution problem has gained great importance due to its socioeconomic implications for people regarding health or logistic issues. The pollution level classically is measured with specialized expensive detectors located in some few locations. In the case of Temuco city there are three such centralized pollution monitoring stations. An alternative approach for measuring the pollution level of cities makes use of inexpensive pollution sensors located on public transportation vehicles. Nonetheless, a drawback of this approach is that these inexpensive sensors can be sensitive to noise, vehicle movement, human intervention or technical failures. Therefore, it is relevant to be able to automatically detect inaccurate or failing sensors as they are multiple and cannot be submitted frequently to a technical revision. In this work, we propose a method to automatically detect these anomalous sensors by an unsupervised deep learning approach using autoencoders. This work is part of an ongoing project where massive data are not still available. In this context, the simulated output of mobile pollution sensors is generated by a time series model that systematically inserts outlier measurements. Our results indicate that the proposed detection method is able to reliably reproduce the data generated and to detect the simulated outliers with an accuracy of over 95%.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Environmental Science (All)
Earth And Planetary Sciences (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Peralta, B. M. - Universidad Nacional Andrés Bello - Chile
2 Soria, R. - Universidad Nacional Andrés Bello - Chile
3 Berres, S. - Universidad Católica de Temuco - Chile
4 Caro, L. - Universidad Católica de Temuco - Chile
5 Mellado, A. - Universidad Católica de Temuco - Chile
6 Schiappacasse, N. - Universidad Católica de Temuco - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The research was partially supported for project INNOVACITY supported by Laureate.

Muestra la fuente de financiamiento declarada en la publicación.