Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.MEDIA.2020.101792 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Statistical shape analysis is a powerful tool to assess organ morphologies and find shape changes associated to a particular disease. However, imbalance in confounding factors, such as demographics might invalidate the analysis if not taken into consideration. Despite the methodological advances in the field, providing new methods that are able to capture complex and regional shape differences, the relationship between non-imaging information and shape variability has been overlooked. We present a linear statistical shape analysis framework that finds shape differences unassociated to a controlled set of confounding variables. It includes two confounding correction methods: confounding deflation and adjustment. We applied our framework to a cardiac magnetic resonance imaging dataset, consisting of the cardiac ventricles of 89 triathletes and 77 controls, to identify cardiac remodelling due to the practice of endurance exercise. To test robustness to confounders, subsets of this dataset were generated by randomly removing controls with low body mass index, thus introducing imbalance. The analysis of the whole dataset indicates an increase of ventricular volumes and myocardial mass in athletes, which is consistent with the clinical literature. However, when confounders are not taken into consideration no increase of myocardial mass is found. Using the downsampled datasets, we find that confounder adjustment methods are needed to find the real remodelling patterns in imbalanced datasets.
| WOS |
|---|
| Computer Science, Interdisciplinary Applications |
| Radiology, Nuclear Medicine & Medical Imaging |
| Computer Science, Artificial Intelligence |
| Engineering, Biomedical |
| Scopus |
|---|
| Radiology, Nuclear Medicine And Imaging |
| Computer Vision And Pattern Recognition |
| Computer Graphics And Computer Aided Design |
| Radiological And Ultrasound Technology |
| Health Informatics |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bernardino, Gabriel | Hombre |
Universitat Pompeu Fabra Barcelona - España
Univ Pompeu Fabra - España |
| 2 | Benkarim, Oualid | - |
McGill University - Canadá
MCGILL UNIV - Canadá Université McGill - Canadá |
| 3 | Sanz-de la Garza, Maria | Mujer |
Hospital Clinic Barcelona - España
Institut d'Investigacions Biomèdiques August Pi i Sunyer - IDIBAPS - España HOSP CLIN BARCELONA - España IDIBAPS - España |
| 4 | Prat-Gonzalez, Susanna | Mujer |
Hospital Clinic Barcelona - España
Institut d'Investigacions Biomèdiques August Pi i Sunyer - IDIBAPS - España HOSP CLIN BARCELONA - España IDIBAPS - España |
| 5 | RUIZ-MARTINEZ, A. | Hombre |
Universitat de Barcelona - España
Hospital Clínico de la Universidad de Chile - Chile Univ Barcelona - España Universidad de Chile - Chile Hospital Clinic Barcelona - España Hospital Clínico Universidad de Chile - Chile |
| 6 | Crispi, F. | Mujer |
Institut d'Investigacions Biomèdiques August Pi i Sunyer - IDIBAPS - España
Universitat de Barcelona - España CIBER Enfermedades Raras - España IDIBAPS - España Univ Barcelona - España CIBER ER - España Hospital Clinic Barcelona - España Centro de Investigación Biomédica en Red de Enfermedades Raras - España |
| 7 | Sitges, Marta | Mujer |
Hospital Clinic Barcelona - España
Institut d'Investigacions Biomèdiques August Pi i Sunyer - IDIBAPS - España CIBERCV - España HOSP CLIN BARCELONA - España IDIBAPS - España CIBER CV - España Centro de Investigación en Red en Enfermedades Cardiovasculares - España |
| 8 | Butakoff, Constantine | Hombre |
Centro Nacional de Supercomputación - España
Barcelona Supercomp Ctr - España |
| 9 | De Craene, Mathieu | Hombre |
Philips Research - Países Bajos
Philips Res Paris - Francia |
| 10 | Bijnens, Bart H. | Hombre |
Universitat Pompeu Fabra Barcelona - España
Institut d'Investigacions Biomèdiques August Pi i Sunyer - IDIBAPS - España Institució Catalana de Recerca i Estudis Avançats - España Univ Pompeu Fabra - España IDIBAPS - España ICREA - España Hospital Clinic Barcelona - España |
| 11 | Gonzalez Ballester, Miguel A. | Hombre |
Universitat Pompeu Fabra Barcelona - España
Institució Catalana de Recerca i Estudis Avançats - España Univ Pompeu Fabra - España ICREA - España |
| Fuente |
|---|
| European Commission |
| European Regional Development Fund |
| Spanish Ministry of Economy and Competitiveness |
| Instituto de Salud Carlos III |
| Fondo Europeo de Desarrollo Regional (FEDER) |
| Agència de Gestió d'Ajuts Universitaris i de Recerca |
| Horizon 2020 Framework Programme |
| AGAUR 2017 SGR grant |
| Agència de Gestió d'Ajuts Universitaris i de Recerca |
| European Union under the Horizon 2020 Programme for Research, Innovation |
| La Caixa Foundation |
| ’Plan Nacional I+D+I |
| Caixa Foundation |
| Spanish Ministry of Economy and Competitiveness (Maria de Maeztu Units of Excellence Programme) |
| Erasmus+ Programme |
| Philips Research Hamburg |
| Agradecimiento |
|---|
| We thank Dr Weese and Dr Groth from Philips Research Hamburg for the segmentation tool and Dr Piella for fruitful discussions. |
| This study was partially supported by the Spanish Ministry of Economy and Competitiveness (grant DEP2013-44923-P, TIN2014-52923-R; Maria de Maeztu Units of Excellence Programme -MDM-2015-0502), el Fondo Europeo de Desarrollo Regional (FEDER), the European Union under the Horizon 2020 Programme for Research, Innovation (grant agreement No. 642676 CardioFunXion) and Erasmus+ Programme (Framework Agreement number: 2013-0040), la Caixa Foundation (LCF/PR/GN14/10270005, LCF/PR/GN18/10310 0 03), Instituto de Salud Carlos III (PI14/00226, PI17/00675) integrated in the 'Plan Nacional I+D+I' and AGAUR 2017 SGR grant n 1531. |