Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3850/978-981-11-2724-3_0629-CD | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Nowadays, industries typically monitor the health of its machinery based on sensors, collecting data (e.g. vibration signals) with high frequency in order to provide real-time information, and thus avoid any delay in detection of an abnormal behaviour. Machine learning algorithms are often applied to classify degradation condition (e.g. normal, damaged, critical) and infer about the Remaining Useful Life (RUL), automating the process of fault detection and/or of prognostics to make preventive decisions. In this context, the definition of the essential features to predict important measures such as RUL can be challenging and highly application-dependent. Moreover, the machine learning performance is inherently limited if incomplete or erroneous features are defined. Deep learning is a data-driven approach that emerges as an alternative for human-based feature description, and it has presented good performance in the prediction of reliability-related metrics such as RUL and system health indicators. Therefore, this work proposes the use of a Convolutional Neural Networks (CNN) to predict RUL of bearings under accelerated degradation. Real data provided by IEEE PHM 2012 Data Challenge was used in which vibration time-series was monitored. Although specific results do not present excellent performance, the model may adopt other ways for improvement with also possibility of using other deep learning approaches.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Maior, Caio Bezerra Souto | Hombre |
Universidade Federal de Pernambuco - Brasil
|
| 2 | dos Santos, Monalisa Cristina Moura | Mujer |
Universidade Federal de Pernambuco - Brasil
|
| 3 | de Santana, João Mateus Marques | Hombre |
Universidade Federal de Pernambuco - Brasil
|
| 4 | de Negreiros, Ana Cláudia Souza Vidal | Mujer |
Universidade Federal de Pernambuco - Brasil
|
| 5 | das Chagas Moura, Márcio | Hombre |
Universidade Federal de Pernambuco - Brasil
|
| 6 | Lins, Isis Didier | Mujer |
Universidade Federal de Pernambuco - Brasil
|
| 7 | Droguett, Enrique López | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
| Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior |
| Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico |