Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Convolutional neural network for remaining useful life prediction based on vibration signal
Indexado
Scopus SCOPUS_ID:85089191233
DOI 10.3850/978-981-11-2724-3_0629-CD
Año 2020
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Nowadays, industries typically monitor the health of its machinery based on sensors, collecting data (e.g. vibration signals) with high frequency in order to provide real-time information, and thus avoid any delay in detection of an abnormal behaviour. Machine learning algorithms are often applied to classify degradation condition (e.g. normal, damaged, critical) and infer about the Remaining Useful Life (RUL), automating the process of fault detection and/or of prognostics to make preventive decisions. In this context, the definition of the essential features to predict important measures such as RUL can be challenging and highly application-dependent. Moreover, the machine learning performance is inherently limited if incomplete or erroneous features are defined. Deep learning is a data-driven approach that emerges as an alternative for human-based feature description, and it has presented good performance in the prediction of reliability-related metrics such as RUL and system health indicators. Therefore, this work proposes the use of a Convolutional Neural Networks (CNN) to predict RUL of bearings under accelerated degradation. Real data provided by IEEE PHM 2012 Data Challenge was used in which vibration time-series was monitored. Although specific results do not present excellent performance, the model may adopt other ways for improvement with also possibility of using other deep learning approaches.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Maior, Caio Bezerra Souto Hombre Universidade Federal de Pernambuco - Brasil
2 dos Santos, Monalisa Cristina Moura Mujer Universidade Federal de Pernambuco - Brasil
3 de Santana, João Mateus Marques Hombre Universidade Federal de Pernambuco - Brasil
4 de Negreiros, Ana Cláudia Souza Vidal Mujer Universidade Federal de Pernambuco - Brasil
5 das Chagas Moura, Márcio Hombre Universidade Federal de Pernambuco - Brasil
6 Lins, Isis Didier Mujer Universidade Federal de Pernambuco - Brasil
7 Droguett, Enrique López Hombre Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank the Brazilian research funding agencies CNPq and CAPES - Finance Code 001 - for the financial support through research grants.

Muestra la fuente de financiamiento declarada en la publicación.