Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Automated detection of rock glaciers using deep learning and object-based image analysis
Indexado
WoS WOS:000585306100006
Scopus SCOPUS_ID:85089440785
DOI 10.1016/J.RSE.2020.112033
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Rock glaciers are an important component of the cryosphere and are one of the most visible manifestations of permafrost. While the significance of rock glacier contribution to streamflow remains uncertain, the contribution is likely to be important for certain parts of the world. High-resolution remote sensing data has permitted the creation of rock glacier inventories for large regions. However, due to the spectral similarity between rock glaciers and the surrounding material, the creation of such inventories is typically conducted based on manual interpretation, which is both time consuming and subjective. Here, we present a novel method that combines deep learning (convolutional neural networks or CNNs) and object-based image analysis (OBIA) into one workflow based on freely available Sentinel-2 optical imagery (10 m spatial resolution), Sentinel-1 interferometric coherence data, and a digital elevation model (DEM). CNNs identify recurring patterns and textures and produce a prediction raster, or heatmap where each pixel indicates the probability that it belongs to a certain class (i.e. rock glacier) or not. By using OBIA we can segment the datasets and classify objects based on their heatmap value as well as morphological and spatial characteristics. We analysed two distinct catchments, the La Laguna catchment in the Chilean semi-arid Andes and the Poiqu catchment in the central Himalaya. In total, our method mapped 108 of the 120 rock glaciers across both catchments with a mean overestimation of 28%. Individual rock glacier polygons howevercontained false positives that are texturally similar, such as debris-flows, avalanche deposits, or fluvial material causing the user's accuracy to be moderate (63.9–68.9%) even if the producer's accuracy was higher (75.0–75.4%). We repeated our method on very-high-resolution Pléiades satellite imagery and a corresponding DEM (at 2 m resolution) for a subset of the Poiqu catchment to ascertain what difference image resolution makes. We found that working at a higher spatial resolution has little influence on the producer's accuracy (an increase of 1.0%), however the rock glaciers delineated were mapped with a greater user's accuracy (increase by 9.1% to 72.0%). By running all the processing within an object-based environment it was possible to both generate the deep learning heatmap and perform post-processing through image segmentation and object reshaping. Given the difficulties in differentiating rock glaciers using image spectra, deep learning combined with OBIA offers a promising method for automating the process of mapping rock glaciers over regional scales and lead to a reduction in the workload required in creating inventories.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Remote Sensing
Imaging Science & Photographic Technology
Scopus
Soil Science
Geology
Computers In Earth Sciences
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Robson, Benjamin Aubrey Hombre Universitetet i Bergen - Noruega
Univ Bergen - Noruega
2 Bolch, T. Hombre University of St Andrews - Reino Unido
Univ St Andrews - Reino Unido
3 MacDonell, Shelley Mujer Centro de Estudios Avanzados en Zonas Aridas - Chile
4 Hölbling, Daniel Hombre Universitat Salzburg - Austria
4 Hoelbling, Daniel Hombre Univ Salzburg - Austria
Universitat Salzburg - Austria
5 Rastner, Philipp Hombre University of Zurich - Suiza
UNIV ZURICH - Suiza
Universität Zürich - Suiza
6 Schaffer, Nicole Mujer Centro de Estudios Avanzados en Zonas Aridas - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 1.12 %
Citas No-identificadas: 98.88 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 1.12 %
Citas No-identificadas: 98.88 %

Financiamiento



Fuente
Conicyt-Fondecyt
Coquimbo regional government
CONICYT-Programa Regional
Austrian Science Fund
European Space Agency
University of Bergen
Universitetet i Bergen
Meltzer foundation
Spatio-Temporal Dynamics of Land Surface Morphology
Austrian Science Fund through the project MORPH (Mapping, Monitoring and Modeling the Spatio-Temporal Dynamics of Land Surface Morphology)
ESA Dragon 4 programme

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
B Robson was supported by the Meltzer foundation and a University of Bergen grant. S MacDonell was supported by CONICYT-Programa Regional (R16A10003) and the Coquimbo Regional Government via FIC-R(2016)BIP 40000343. D. H?lbling has been supported by the Austrian Science Fund through the project MORPH (Mapping, Monitoring and Modeling the Spatio-Temporal Dynamics of Land Surface Morphology; FWF-P29461-N29). N Schaffer was financed by CONICYT-FONDECYT (3180417) and P Rastner by the ESA Dragon 4 programme (4000121469/17/I-NB). Thank you to Anna Telegina who read an early version of the manuscript. We are thankful to ESA for the provision of Sentinel data and CNES/Airbus DS for the provision of the Pl?iades satellite data for a reduced price within the ISIS programme. We are grateful for the constructive comments from three anonymous reviewers.
B Robson was supported by the Meltzer foundation and a University of Bergen grant. S MacDonell was supported by CONICYT-Programa Regional (R16A10003) and the Coquimbo Regional Government via FIC-R(2016)BIP 40000343. D. Holbling has been supported by the Austrian Science Fund through the project MORPH (Mapping, Monitoring and Modeling the Spatio-Temporal Dynamics of Land Surface Morphology; FWF-P29461-N29). N Schaffer was financed by CONICYT-FONDECYT (3180417) and P Rastner by the ESA Dragon 4 programme (4000121469/17/I-NB). Thank you to Anna Telegina who read an early version of the manuscript. We are thankful to ESA for the provision of Sentinel data and CNES/Airbus DS for the provision of the Pleiades satellite data for a reduced price within the ISIS programme. We are grateful for the constructive comments from three anonymous reviewers.

Muestra la fuente de financiamiento declarada en la publicación.