Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2020.07.022 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh-refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fuhrer, Thomas | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Praetorius, D. | Hombre |
Technische Universität Wien - Austria
TU Wien - Austria |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Austrian Science Fund |
| Austrian Science Fund FWF |
| CONICYT, Chile (through FONDECYT project) |
| Agradecimiento |
|---|
| This work was supported by CONICYT, Chile (through FONDECYT project 11170050) and the Austrian Science Fund FWF (through project P33216 and the special research program SFB F65). |
| This work was supported by CONICYT, Chile (through FONDECYT project 11170050) and the Austrian Science Fund FWF (through project P33216 and the special research program SFB F65). |