Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1002/ANGE.202007237 | ||
| Año | 2020 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
© 2020 The Authors. Published by Wiley-VCH GmbHNature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aragonès, Albert C. | Hombre |
King's College London - Reino Unido
Max Planck Institute for Polymer Research - Alemania |
| 2 | Martín-Rodríguez, Alejandro | Hombre |
Departament de Química Inorgànica i Orgànica - España
Universitat de Barcelona - España |
| 3 | Aravena, Daniel | Hombre |
Universidad de Santiago de Chile - Chile
|
| 4 | Puigmartí-Luis, Josep | Hombre |
ETH Zurich - Suiza
|
| 5 | Amabilino, David B. | Hombre |
University of Nottingham - Reino Unido
|
| 6 | Aliaga-Alcalde, Núria | Mujer |
Universitat Autònoma de Barcelona - España
Institució Catalana de Recerca i Estudis Avançats - España |
| 7 | González-Campo, Arántzazu | - |
Universitat Autònoma de Barcelona - España
|
| 8 | Ruiz, Eliseo | Hombre |
Departament de Química Inorgànica i Orgànica - España
Universitat de Barcelona - España |
| 9 | Díez-Pérez, Ismael | Hombre |
King's College London - Reino Unido
|
| Fuente |
|---|
| Generalitat de Catalunya |
| European Research Council |
| Spanish Ministerio de Ciencia, Innovacion y Universidades |
| Institució Catalana de Recerca i Estudis Avançats |
| Severo Ochoa Program for Centers of Excellence in R&D |
| Ministerio for a predoctoral FPI |
| Ministerio de ciencia e Innovacion for Ramon y Cajal |
| Agradecimiento |
|---|
| This research was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (grants PGC2018‐093863‐B‐C21, MAT2016‐77852‐C2−1‐R and MDM‐2017‐0767) and the ERC Grants Fields4CAT (grant 772391) and Tmol4TRANS (grant 724981). I. D.‐P. thanks King's College London for start‐up funds support. A.M.R. thanks the Ministerio for a predoctoral FPI grant. E.R. thanks Generalitat de Catalunya for an ICREA Academia award and for the SGR2017‐1289 grant. N.A.‐A. and A.G.‐C. thank the Generalitat de Catalunya for the grant 2017SGR1277 and the Severo Ochoa Program for Centers of Excellence in R&D (SEV‐2015‐0496). A.G.C. thanks Ministerio de ciencia e Innovacion for Ramon y Cajal grant (RYC‐2017‐22910). The authors acknowledge the general facilities of the University of Barcelona (CCiT‐UB) and the computer resources, technical expertise and assistance provided by the Barcelona Supercomputing Centre. |