Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A five-field augmented fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem
Indexado
WoS WOS:000573407500004
Scopus SCOPUS_ID:85090342069
DOI 10.1016/J.CAMWA.2020.08.017
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this work we introduce and analyze a new augmented fully-mixed formulation for the stationary Navier–Stokes/Darcy coupled problem. Our approach employs, on the free-fluid region, a technique previously applied to the stationary Navier–Stokes equations, which consists of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, together with the pressure. In addition, by using the incompressibility condition, the pressure is eliminated, and since the convective term forces the free-fluid velocity to live in a smaller space than usual, we augment the resulting formulation with suitable Galerkin type terms arising from the constitutive and equilibrium equations. On the other hand, in the Darcy region we apply the usual dual-mixed formulation, which yields the introduction of the trace of the porous media pressure as an associated Lagrange multiplier. The latter is connected with the fact that one of the transmission conditions involving mass conservation becomes essential and must be imposed weakly. In this way, we obtain a five-field formulation where the pseudostress and the velocity in the fluid, together with the velocity and the pressure in the porous medium, and the aforementioned Lagrange multiplier, are the corresponding unknowns. The well-posedness analysis is carried out by combining the classical Babuška–Brezzi theory and the Banach fixed-point theorem. A proper adaptation of the arguments exploited in the continuous analysis allows us to state suitable hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme is well-posed and convergent. In particular, Raviart–Thomas elements of lowest order for the pseudostress and the Darcy velocity, continuous piecewise linear polynomials for the free-fluid velocity, piecewise constants for the Darcy pressure, together with continuous piecewise linear elements for the Lagrange multiplier, constitute feasible choices. Finally, we provide several numerical results illustrating the performance of the Galerkin method and confirming the theoretical rates of convergence.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Mathematics, Applied
Scopus
Modeling And Simulation
Computational Mathematics
Computational Theory And Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 GATICA-PEREZ, GABRIEL NIBALDO Hombre Universidad de Concepción - Chile
2 OYARZUA-VARGAS, RICARDO Hombre Universidad del Bío Bío - Chile
Universidad de Concepción - Chile
3 Valenzuela, Nathalie Mujer Universidad del Bío Bío - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT-Chile
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo Nacional de Desarrollo Científico y Tecnológico
CONICYT-Chile of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal
Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal
CONICYT-Chile through project Fondecyt of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was partially supported by CONICYT-Chile through project Fondecyt 1161325 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal.
This research was partially supported by CONICYT-Chile through project Fondecyt 1161325 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal.

Muestra la fuente de financiamiento declarada en la publicación.