Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A fuzzy-based driver assistance system using human cognitive parameters and driving style information
Indexado
WoS WOS:000576692900014
Scopus SCOPUS_ID:85090916358
DOI 10.1016/J.COGSYS.2020.08.007
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Reducing the number of traffic accidents due to human errors is an urgent need in several countries around the world. In this scenario, the use of human-robot interaction (HRI) strategies has recently shown to be a feasible solution to compensate human limitations while driving. In this work we propose a HRI system which uses the driver's cognitive factors and driving style information to improve safety. To achieve this, deep neural networks based approaches are used to detect human cognitive parameters such as sleepiness, driver's age and head posture. Additionally, driving style information is also obtained through speed analysis and external traffic information. Finally, a fuzzy-based decision-making stage is proposed to manage both human cognitive information and driving style, and then limit the maximum allowed speed of a vehicle. The results showed that we were able to detect human cognitive parameters such as sleepiness –63% to 88% accuracy–, driver's age –80% accuracy– and head posture –90.42% to 97.86% accuracy– as well as driving style –87.8% average accuracy. Based on such results, the fuzzy-based architecture was able to limit the maximum allowed speed for different scenarios, reducing it from 50 km/h to 17 km/h. Moreover, the fuzzy-based method showed to be more sensitive with respect to inputs changes than a previous published weighted-based inference method.

Revista



Revista ISSN
Cognitive Systems Research 1389-0417

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Neurosciences
Psychology, Experimental
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 VASCONEZ-HURTADO, JUAN PABLO Hombre Universidad Técnica Federico Santa María - Chile
2 Viscaino, Michelle Mujer Universidad Técnica Federico Santa María - Chile
3 Guevara, Leonardo Hombre Universidad Técnica Federico Santa María - Chile
4 AUAT-CHEEIN, FERNANDO ALFREDO Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Universidad Técnica Federico Santa María
AC3E
ANID-PFCHA/DOCTORADO BECAS CHILE
UTFSM Chile
Advanced Center of Electrical and Electronic Engineering, AC3E, Basal Project
Universidad T?cnica Federico Santa Mar?a

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the support provided by Universidad T?cnica Federico Santa Mar?a. This work was supported in part by the Advanced Center of Electrical and Electronic Engineering, AC3E, Basal Project FB0008, DGIIP-PIIC-26/2020 UTFSM Chile, Fondecyt 1201319, ANID-PFCHA/DOCTORADO BECAS CHILE/2018-21180513, 21181420, and 21180470.
The authors acknowledge the support provided by Universidad Tecnica Federico Santa Maria. This work was supported in part by the Advanced Center of Electrical and Electronic Engineering, AC3E, Basal Project FB0008, DGIIP-PIIC-26/2020 UTFSM Chile, Fondecyt 1201319, ANID-PFCHA/DOCTORADO BECAS CHILE/2018-21180513, 21181420, and 21180470.

Muestra la fuente de financiamiento declarada en la publicación.